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(A BRIEF) 
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P. HORAVA, PHYS. REV. D79, 084008 (2009)

TOWARDS UV COMPLETE THEORY OF GR

▸ Horava proposed a UV complete theory of GR by 
introducing the anisotropic scaling. 

▸ In the IR limit, the Lorentz symmetry should be recovered. 

▸ To deal with the anisotropic scaling, the ADM 
decomposition is adopted:

ds2 = − N2c2dt2 + gij(dxi + Nidt)(dxj + Njdt) .
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P. HORAVA, PHYS. REV. D79, 084008 (2009); M.-I. PARK, JHEP 0909, 123 (2009).

DEFORMED HORAVA-LIFSHITZ GRAVITY

▸ Deformed HL gravity (softly broken detailed balance): 
 
 
 
 
where q is introduced to include asymptotically flat 
solutions and Cij is the Cotton-York tensor,
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P. HORAVA, PHYS. REV. D79, 084008 (2009); M.-I. PARK, JHEP 0909, 123 (2009).

IR LIMIT OF DEFORMED HORAVA-LIFSHITZ GRAVITY

▸ In the IR limit, GR is recovered with λ=1: 
 
 
 
where the fundamental coefficients are identified as
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1
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c =
κ2

4
μ2(q−2 − 2ΛW)

2(3λ − 1)
, GN =

κ2c2

32π
, Λ = −

3Λ2
W

q−2 − 2ΛW
.

8



A. KEHAGIAS AND K. SFETSOS, PHYS. LETT, B678, 123 (2009).

KEHAGIAS-SFETSOS BLACK HOLE

▸ Spherically symmetric metric ansatz: 
 

▸ Asymptotically flat (ΛW=0) vacuum solution with λ=1:

ds2 = − N2(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdϕ2) .

N2 = f = 1 +
r2

2q2 [1 − 1 + 8q2M/r3]
=

2[1 − 2M/r + q2/r2]
1 + 2q2/r2 + 1 + 8q2M/r3

≈ 1 −
2M
r

+ O ( q2M2

r4 )  for  q
2

r2
,

M
r

≪ 1.
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TOV 
EQUATION

DERIVING AND 
SOLVING
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EQUATIONS OF MOTION IN DHL

▸ Starting with Itot=IHL+Imat, where Imat is the matter action of a perfect fluid and 
will be specified by choosing a EoS. 

▸ A static, spherically symmetric metric ansatz: 
 

▸ Equations of motion: 
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ds2 = − e2Φ(r)c2dt2 +
dr2

f(r)
+ r2 (dθ2 + sin2 θdϕ2) .

ρ =
c2q2

8πGNr2 (q−2r(1 − f ) +
(1 − f )2

r )
′￼

,

p =
c4q2

8πGNr4 [(1 − f )(1 − f − q−2r2) + 4rf (1 − f + r2/2q2) Φ′￼],

p′￼= − (ρc2 + p) Φ′￼.



TOLMAN-OPPENHEIMER-VOLKOFF EQUATION IN DHL

▸ The function f is solved as 

 

▸ TOV equation in DHL: 

 

where ,  

and . 

▸ We can solve TOV equation by considering a specific equation-of-state.

f = 1 +
r2

2q2 [1 − 1 + 8q2GNc−2m(r)/r3], m(r) = ∫
r

0
dr′￼4πr′￼

2ρ(r′￼) .

m′￼= 4πr2ρ,

p′￼= −
GNmρα

r2β
(1 + p/ρc2)[1 + 4πr3pβ/mc2 − q2ρ̃]

1 + 8q2ρ̃ [1 − 2GNm /rc2 + q2/r2]
,

α = 2−1 [1 + 2q2/r2 + 1 + 8q2ρ̃] β = 2−1 [1 + 2q2ρ̃ + 1 + 8q2ρ̃]
ρ̃ = GNc−2mr−3
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EQUATION-OF-STATE FOR AN ARBITRARY COMPACT OBJECT

▸  Uniform density case:  

▸ Randomly chosen EoS that satisfies:  decreases as the 
radius  inside the compact object increases and  

▸ Causal limit: 

ρ = ρc = const.

ρ(r)
r p(r) ≥ 0.

cs = (dp/dρ)1/2 ≤ c .
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UNIFORM DENSITY LIMIT

▸ Following [Buchdahl, Phys. Rev. (1959)], a compact object of radius  with uniform density, 
 is considered. Then, we have 

 

 

 

where  and  

▸ The uniform density limit is given by 
 

 

 

where  and 

R
ρ(r) = ρc = const. for r < R,

p
ρc
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β (1 − αR2/q2)1/2 − (1 − αr2/q2)1/2 ,

α = 2−1[ 1 + (32π /3)q2ρc − 1] β = 3(1 + α)/(1 − α) .

M
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4
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16
27 ( R

q )
−2

+ O ( R
q )

−4

θ = tan−1
162 3R2 64 + 368R2/q2 + 144R4/q4 + 81R6/q6

512q2 + 3024R2 − 972R4/q2 + 729R6/q4
ξ = 64 + 252R2/q2 + 81R4/q4
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[Dadhich, JCAP (2020)] 
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SOLVING TOV NUMERICALLY

▸ In order to solve the TOV equation numerically, we adopt 
the explicit Runge-Kutta method of order 8.[E. Hairer, S. P. Norsett 

G. Wanner, “Solving Ordinary Differential Equations I: Nonstiff Problems”, Sec. II.] 

▸ The radius R of a compact star is determined by  
or 

ρ(R) = 0
p(R) = 0.
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NUMERICAL SIMULATION 

▸ The cases of the uniform density and random EoS are 
simulated. 

▸ Both cases show that the uniform density limit obtained by 
the analytical calculation gives the upper bound of the 
possible masses of compact objects with a given size. 

▸ The uniform density limit curve meets the Buchdahl limit 
for the compact objects significantly larger than the scale 
parameter .q
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SOUND SPEED LIMIT

▸ In GR, the speed of sound  inside a compact object 
has to be subluminal, which raises the causal limit given by[C. E. 

Rhoades, Jr. and R. Ruffini, PRL 32, 324 (1974); V. Kalogera and G. Baym, APJL 470, L61 

(1996)] 

 

where  and  is the fiducial density that is the 
maximum density of a known EoS. 

▸ In HL,  can be larger than  for large 

cs = dp/dρ

Mmax = μ ( ρu

5 × 1014 g/cm3 )
−1/2

,

μGR ≈ 3 M⊙ ρu

μHL 3 M⊙ ρu .
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K. KIM, J.J. OH, C. PARK AND E.J. SON, PRD103, 044052 (2021)

SELECTED EQUATION-OF-STATE MODELS

▸ We select four EoS models which cover the observed maximum mass, ∼ 2M⊙ 
[P. B. Demorest et al., Nature (2010); M. Linares et al., ApJ (2018)] 

▸ APR4: derived by variational method but with a specific nucleon potential 
model [A. Akmal et al., PRC (1998)] 

▸ MPA1: derived by relativistic Brueckner-Hartree-Fock theory [H. Müther et al., PLB 

(1987)] 

▸ MS1: derived by relativistic mean field theory [H. Müller et al., NPA (1996)] 

▸ WFF1: derived by variational method but with a specific nucleon potential 
model [R. B. Wiringa et al., PRC (1988)] 

▸ For the crust structure, we impose Skyrme-Lyon model.[F. Douchin et al., A&A (2001)]
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MASS-RADIUS PROFILE OF NEUTRON STARS
q = 400 m q = 4 000 m
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G. NARAIN, J. SCHAFFNER-BIELICH, AND I. N. MISHUSTIN, PHYS. REV. D74, 
063003 (2006)

EQUATION-OF-STATE FOR A FREE FERMION GAS

▸  The EoS for a free fermion gas at zero temperature: 

 

where . 

▸ An interaction term  can be added to both equations, 
where determining the interaction strength when the 
amount of interaction energy is given.

ρ =
1
π ∫

kF

0
k2 m2

f + k2dk =
m4

f

8π2
[(2η3 + η)(1 + η2)1/2 − sinh−1(η)]

p =
1

3π2 ∫
kF

0

k4

m2
f + k2

dk =
m4

f

24π2
[(2η3 − 3η)(1 + η2)1/2 + 3 sinh−1(η)],

η ≡ kF /mf

(m2
f /3π2)2y2η6

y = mf /mI
mI
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G. NARAIN, J. SCHAFFNER-BIELICH, AND I. N. MISHUSTIN, PHYS. REV. D74, 
063003 (2006)

FERMIONIC COMPACT OBJECTS IN GR
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MAXIMUM MASSES FOR VARIOUS  AND y mf
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COMPACTNESS OF FERMIONIC COMPACT OBJECTS
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FERMIONIC COMPACT OBJECTS NEAR MBH

▸ Fermionic Compact 
Objects for several  

▸ Minimal BH (MBH): 

mf

R = M = q
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CONCLUDING 
REMARKS



K. KIM, J.J. OH, C. PARK AND E.J. SON, ARXIV:1810.07555

SUMMARY

▸ KS solution approximates to Schwarzschild spacetime at the asymptotic region but it is 
similar to the Reissner-Nordstrom BH near the horizon and the HL parameter  plays 
the role of the electric charge in RN solution. 

▸ The primordial BH (PBH) is a candidate of dark matters and some PBHs may be the 
extremal BHs (EBHs), which do not evaporate and may be tiny for small . 

▸ Near the EBH, there exist equilibrium states of compact objects, which is not seen in 
GR. 

▸ If the equilibrium states pass stability tests, a new type of compact objects may be 
predicted. 

▸ The new compact objects are more compact than neutron stars and hardly observable 
for small , which suggests that this new equilibrium may be a candidate of dark 
matters.

q

q

q
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STABILITY OF COMPACT OBJECTS

▸ A criterion: 

▸  for stable equilibrium 

▸  for unstable equilibrium 

▸ More stability tests exist: 

▸ For example, the equilibrium 
between D and E is unstable 
because , whereas 

 between B and C.

dM
dρc

> 0

dM
dρc

< 0

ω2
0 < ω2

1 < 0
0 < ω2

0 < ω2
1 < ⋯
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