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Gravity
in Anti de Sitter Space




Holography or AdS/CFT correspondence

/ Gravity | CFT
in Anti de Sitter Space §, on boundary




Holography

Emergent of qguantum spacetime from QFT




Holography

Emergent of quantum spacetime from QFT
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Emergent Black Hole Spacetime?



Holographic Dual of Black Hole

TFD state: Entangled State of Two CFTs

| 5
| TFD(B)) = — ) e B |E)Q |E,
A)) ﬁ? ) )

Infinite Temperature

1
TFD0)) = — ) |E)® |E,
| TFD(0)) \/agm |E,)

: Maximally entangled state
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Multiboundary Wormhole




Motivation

What is the quantum state of multiboundary wormhole?
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|TFD(p)) = —= 5E,) ® | E,)
vl



Multiboundary Wormhole

What is the quantum state of multiboundary wormhole?

What is generallzatlon of TFD state? ’ \
| TFD(B)) = TZ E|ENQ® |E,)

What is generalization of maximally entangled state? -
1
| TFD(0)) = Ny Y |E)® |E,)



A New Genuine Multipartite Entanglement Measure:
from Qubits to Multiboundary Wormholes
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Probing the Hierarchy of Genuine Multipartite Entangilement
with Generalized Latent Entropy
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Bell State
The Simplest State / = 0 TFD State
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| Bell) = %(|00>+|11>)



Trace out B

1
Bell) = —(100) +]11)) pA:TrB(m:_((l) (1)>

\/5 2

- maximally mixed state

MAXimally mixed state saturates the entanglement entropy.

Sx =~ Tr(pylogp,)

Good Measure

for bi-partite Entanglement




How about Multi-partite Entangled State?




Which state is more “multi-partite entangled”?

|IGHZ) = L(|ooo>+|111>) Ws W) = L(|100>+ |010) + | 001))

V2 V3

or, are there other states

which is more entangled?




Generalization to Multipartite Case

Need New Measure for Multi-partite Entanglement

Maximallyacntangiedoiate
1 Maximally Multi-Entangled State
¥) = — D Iny®|n)
Vd 5
A B A4 Az A,

vieasurewro - artirten: z . :
Mlaaiaiss Jur dbperidis Jusuigluian Measure for Multi-partite
Sy =—Tr(pslogps) Entangiment

We need new MEASURE for

Multi-partite Entangiement!!




We propose new VMIEASURE for

Multi-partite Entanglement.

“L-Entropy” of
subsystem A and B

£.n = 2min[S(A), S(B)] — Sx(A : B)



Reflected Entropy
[Dutta, Faulkner, 2019]

A B

A B

Canonical Purification
Mixed state Pap Pure state |1/Pas)

Trace out B and B* ‘
RETIECTEAENTIOPY, -
S«(A : B) = S(AA*) = S(BB*)

A*

Reduced density matrix for AA*



Averaged L-Entropy

New Measure for Multi-partite Entanglement

* The bound for the reflected entropy

2 min[S(A), S(B)] = Sx(A : B) > I(A : B)

- £p = 2min[S(A), S(B)] — Sx(A : B) = 0

*  For n-partite system, calculate L-entropy of all possible choices of two parties.

€ )

n-partite system A A> ces A,

\_ J

2
Averaged “L-Entropy” RN H [fAi Aj]—nm—l)

1<j




Criteria for Multipartite Entanglement
Genuine Multipartite Entanglement Measure & (GME)

[Ma, Chen, Chen, Spengler, Gabriel, and Huber, 2011] [Xie, Eberly, 2021]

. & = O for fully-seperable or bi-seperable state
|000) | Bell) ® |0)

Il. & > O for non-biseperable state
I1l. &: invariant under Local Unitary operation.

IV. &: Non-increasing under LOCC [Entanglement Monotone]

Local Operations and Classical Communication




Criteria for Multipartite Entanglement
Genuine Multipartite Entanglement Measure & (GME)

[Ma, Chen, Chen, Spengler, Gabriel, and Huber, 2011] [Xie, Eberly, 2021]

. & = O for fully-seperable or bi-seperable state
|000) | Bell) ® |0)

Il. & > O for non-biseperable state
I1l. &: invariant under Local Unitary operation.

IV. &: Non-increasing under LOCC [Entanglement Monotone]

Local Operations and Classical Communication

Our averaged L-entropy satisfies this criteria.




Maximally Multi-entangled State

The Bound of L-entropy

n-partite system

A4 A> Soe A,

* In general, the L-entropy is bounded by 2 log[d ]
£y < 2logld]

* Depending on n and d, the bound is not saturated.

For tri-partite system (n = 3), the averaged L-entropy is bounded by log[d ]

which is the averaged L-entropy of (generalized) GHZ state

Ly
— ) | JjaJsic)
Vd i3

£, S Coyy =logld] < 2logld] [W)Gonz =

ayv —



Which states saturate

the bound of L-entropy?

v < 21ogld]



k-Uniform State

Saturates the bound of the L-entropy

n-partite system

A4 A> Soc A,

* k-uniform state: In n-partite system, the reduced density matrix of any kK numbers of

subsystems is maximally mixed.

1
pAlAZ"'Ak — ﬁuAlAk — ﬁ”Al ® cee ® [lAk MaXima"y mixed State

* k-uniform state has maximum L-entropy 2 log[d] (k = 2)

 ,(k-uniform) = 2log[d]

n

* In n-partite system, k-uniform state can existsonly if &k = LEJ [necessary condition]

Ex) There is no k-uniform state (k = 2) in tri-partite system (n = 3)
., S Coyy =logld] < 2log[d]

ay —



Example of k-uniform State

k-uniform state saturate the L-entropy (k = 2)

1 .
|Bell) = —(]00) + | 11)) : 1-uniform state
2

1
1) = —=(100000) + [01100) + | 10001) + | 11101) — [00111) — [01011) — | 11010) — | 11101))
8

: 2-uniform state



2-Uniform State

L-entropy can capture 2-uniform state

Maximal L-entropy

K-uniform 2-uniform
state

state \_/ state

(Cay = 210g[d])




Generalized L-Entropy

How to distinguish k-uniform states?

n-partite system

€ )

A4 A> A; A4 ‘oo A,
\_ )
A4 Az A3 A4 : reduced density matrix

: (canonical) purification

£ = 2min[S(AA,), S(A3A,)] — Sp(AA, 1 A3AY)
£ <2 g‘ logld]

: saturated by k-uniform state (k = m)




Maximally Mixed State
1

\/Z:

¥) = — ) |E)®|E,)

Introduce Temperature

Thermofield Double(TFD) State
(Canonical Purification of Thermal State)

Black Hole in Gravity

1
TFDP) = —= Y e *E|E,) @ | E,)

What is Finite Temperature version
of Multi-entangled State?



Thermal Pure Quantum (TPQ) State

Pure state reproducing Thermal Expectation Value

[ Sugiura and Shimizu, 2013]

* In a given Hilbert space #°, we choose a random state | l//).

Then, we define the TPQ state | V) by
_ Lp
|¥) =e" | w)

* The random average of the expectation value with respect to the TPQ state yields the
thermal expectation value.

(W,101%,) 1
(W,1¥)  Z4p)




<\Pﬁ| O ‘Pﬁ> 1
T, 19 P

This result looks nice.

One might think it is similar to TFD state.

: Tr(0 e~

(TFD(P)| O | TFD(p)) = 70

But, it is different.

TPQstate |¥y) € # 7S | TFD(B)) € X Q KX

: Not purification of thermal state - purification of thermal state



Let’s consider the random state

in enlarged Hilbert space?



TPQ-like State in Enlarged Hilbert Space

*  For n-partite system, consider a random state in the n copy of Hilbert space:

) € Q- QK

- Define TPQ-like state:
n
¥, = [[e* 1w e @@

i=1 M
n

n

* Then, the random average of the expectation value still reproduce the thermal one!

(P51 O:|¥y) 1
A p — TI'(@- e_ﬁH) when @J- acts only on jw Hilbert space.

(P1%  2p




Holographic Dual of TPQ-like State

Microstate of Black Hole or Multi-boundary Wormhole?




Factorization Problem
TPQ-like State still looks problematic

¥Y.|0,0,¥
( ﬁl 10, | /3> _ 1 Tr(@lﬁze_ﬂH)
(Wpl¥p) Z(p)




Factorization Problem
TPQ-like State still looks problematic

¥Y,|0,0, Y
(Ws! 0,0, ¥p) _ 1 Tr(@1 e_ﬂH)Tr(@z €_ﬁH>
00, (ZP)P

= Factorized!!




Is it Contradiction?

Or, is TPQ-like state not holographic
dual to black hole?

(W510,0,]Wy)  Tr(0, e)Tr(0, ™)
O 1 @2 7S Y19 [Z(p))?

This should not be factorized. Factorized!!



Assumption:

Operator is state-independent

(W510,0,]Wy)  Tr(0, e)Tr(0, ™)
(W5 ¥p) - [Z(P)]?

O, 0,

7S

This should not be factorized. Factorized!!

Operator is state-dependent

in the black hole




Assu:i"uon:

Operator is state-inaepaendent

(W510,0,]Wy)  Tr(0, e)Tr(0, ™)

WS SR [Z(P)]?

O, 0,

This should not be factorized.

Operator is state-dependent

in the black hole




Question:

How can we define the state-dependent
operator?




Multi-partite Thermal Pure Quantum State

Incorporate the state-dependent

For details, see our papers, [2411.11961], [2510.19922]



Example of MTPQ State

5-party 3 qubit SYK Model (N=6)

6 — party-1 party-2 — party-3 — party-4 party-5

— EE (party-1) ===-- Sin

Bett a
EE of one party vs thermal entropy parameter a vs effective (inverse) temperature
0.06 T T T T T
L — Slealle{thy)  —— S(en,llom) — S(engllem)  — Slea,llem) |
oos Pl 2 MingSes 2V, Sun (%]
0.04+
S(pa;llpth) 0.03-
0.02+
0.015
0.9% 1 2 3 4 5 6 00 1 2 4 5 6
Bett a

relative entropy between reduced density matrix

_ q(Sh ¢(2)
and thermal density matrix L-entropy vs 2 mln(Sth ’ Srh )



Future Works
Applications and Beyond

* MTPQ state: Holography of multi-boundary wormhole
*  K-uniform state: quantum secret sharing and quantum cryptography
* TPQ state: study of black hole micro state

* TPQ state: quantum simulations
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