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Phenomenology of Dark Matter appears
in Various Length Scales!

LHC, CERN
| Nov 25 12:21:51 2015 CET
/14582169

Galactic

Collider Physics Astrophysics

Cosmology
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But why galactic astrophysics is one of the astrophysics
field may draw attention to high energy particle physicists?




But why galactic astrophysics is one of the astrophysics
field may draw attention to high energy particle physicists?

Because it provides us measurement and insight
-about dark matter.




Galaxies have various
interesting substructures,
that can be used for studying
dark matter!

Background: Simulated galaxy h277: https:/nbody.shop/data.html



Stars on the same orbit, originating from
globular clusters or dwarf galaxies tidally stripped
- Orbit is visible = measuring gravity
- Any gaps in streams may be a sign of collision
with dark matter subhalo!




Dwarf Galaxies

A round and faint satellite galaxy orbiting the galaxy.
- whole structure is clearly visible = core - cusp problem
- less baryonic activity

— good source of indirect detection measurements




Dwarf Galaxies

- central shape of dark matter halo — core - cusp problem
- high dark matter density
— good source of indirect detection measurements




m Dwarf Galaxies

- nearby stars — highly precise and complete measurement
— high quality measurement of local dark matter density

- measruing dark matter density around solar system

— relevant for direct detection of dark matter

Dark Matter
mass ~ Gel - TeV)

/vcml energy

E~3V r-J' (tens of keV)

Galactic Center |

phonons

| Solar Neihborhood




Dwarf Galaxies

%

We can study the details of

galactic dark matter by analyzing
these galactic substructures!

[ Solar Neighborhood



Dwarf Galaxies

%

In this talk, let's focus on these two.

| Solar Neigborhood



Solar Neighborhood Dwarf Galaxies

Talk title:

Understanding Galactic Dark Matter
\with Neural Networks

" Why do we need to use
machine learning and neural networks

_to analyze these galactic substructures?
12 /55




" Why do we need to use
machine learning and neural networks
_to analyze these galactic structures?

. . If we consider a galaxy

[ Galactic Dynamics ] as a hydrodynamic
system N — oo

consisting of stars,
phase-space density of
a star (probability of
finding a star with
given position and
velocity)
describes the system.

We can estimate the
gravitational acceleration field!

13/ 55

Equation of motion: Boltzmann Equation

o 9 01, .
[a—l—’l}%—l—a%]f(ﬂf,?})—o

If phase-space density
is determined..




" Why do we need to use
machine learning and neural networks
_to analyze these galactic structures?

[ Galactic Dynamics ]

Equation of motion: Boltzmann Equation

% o . 91, .
[(%—I—v F a%]f(aj,v)—()

[ Classic inference method: ]
Introduce a simple parametric model

of galaxy to fit data and infer » —| —__
dark matter halo shape. Not a “local” dark matter density

measurement!
* This strategy may not be
the best strategy in the current
\_ data-driven era of astrophysics!




AMERICAN

Scientist

Astrophysics
Big

Data Goes

BY JOEL R. PRIMACK

ASTRONOMY

Astrophysics is
becoming
a data science!

SIPACE

AllNews Earth New Space & Tech  Space Commerce  Space Stations  Science & Exploration  Press Releases

SCIENCE AND EXPLORATION

Talks at Google: Data-Driven Discovery: Astronomy
in the Era of Large Surveys

By Marc Boucher | Status Report | February 15,2015 BE O
Filed under Astronomy, Big Data, Google, John Bochanski

Large, digital surveys of the night sky have revolutionized how astronomy is done. Astronomers are
no longer tethered to their telescopes, but instead have access to terabytes of data on hundreds of
millions of stars and galaxies through the internet.

John Bochanski, an assistant professor of Physics at Rider University, has used survey data over

the last decade to study our home Galaxy, the Milky Way, and millions of its stellar constituents.



Scientist

Astrophysics Data Goes

v B1g

Large Surveys
(Gaia, LSST, JWST, DESI...)[ gy jorL &, prIMACK
_ (N-body simulations...) y —
4 h SPPACE
Public datasets
\§ J

SCIENCE AND EXPLORATION

Machine Learning:
robust tool for
data driven discovery! y

Talks at Google: Data-Driven Discovery: Astronomy
in the Era of Large Surveys

\ Marc Boucher (inJOR Y]
Astronomy, Big Data, Google, John Bochanski
You can discover new thi ngs arge, digital surveys of the night sky have revolutionized how astronomy is done. Astronomers are

Eno longer tethered to their telescopes, but instead have access to terabytes of data on hundreds of

(for example, dark matter) _

bv vou rself! John Bochanski, an assistant professor of Physics at Rider University, has used survey data over
s the last decade to study our home Galaxy, the Milky Way, and millions of its stellar constituents.




" Why do we need to use

machine learning and neural networks
_to analyze these galactic structures?

[ Galactic Dynamics }[ Neural Network

Equation of motion: Boltzmann Equation

o 9 01, .
[aﬁ—’l}%—l—&%]f(x,v)—o

[ Machine-learning based inference method: | S\ :

Neural Networks for
arbitrary density estimation:
- Normalizing Flows

Y i

This is a fully
model-independent

N—

strategy!




Normalizing Flows:

Neural Network Iearning a Transformation

Normalizing Flows (NFs) is an artificial neural network that learns a transformation

of random variables.

Base distribution (known) _ Target distribution (data)

count

- 20

9 - 10 g

]

W

34 , , . : : 1 LLyg —3

T T
Main idea: if we could find out such transformation, we can use the transformation

150

oL 100

- 5l

|

formula for the density estimation:
y v

Neural Network

d/L_l: — —
— w="T(u
- (@)
This formula can be used for training normalizing flows, too:
Maximum likelihood estimation

pW(?ﬁ) — PU(?Z) '

count
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| earned transformation
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Outline of Stratec

Gaia DR3:

star catalog of
the Milky Way

Neural Networks for Density Estimation:
Normalizing Flows

Uy — Uy —> -+ — Uy = (T, V)

Solving EOM (Boltzmann Equation)

o L, o0 _ 0 Lo
E%—v-%—l—a-% f(Z,7) =0

e a
Star catalog
{(Z,0)} )
- N
Phase space density
f(Z, )

I
Gravitational accel.
a(7)

I
Mass density
p(Z)

\ J

arXiv: 2205.01129, 2305.13358
See also Green et. al. arXiv:2011.04673, arXiv:2205.02244

Solving Gauss's Equation

—4nGp=V -a
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A Snapshot of Milky Way

from Gaia

Recently, Gaia mission from European

Space Agency (ESA) released
a new catalog containing very
detailed measurement of

stars in the Milky Way that can be
used for various physics analysis.

# sources in Gaia #

sources in Gaia
DR2

Total number of sources

1,692,919,135

Gaia Early Data

Release 3
Number of sources with full astrometry 1,467,744,818 1,331,909,727
Number of 5-parameter sources 585,416,709
Number of 6-parameter sources 882,328,109
Number of 2-parameter sources 343,964,953 361,009,408
Gaia-CRF sources 1,614,173 556,869

Sources with mean G magnitude

1,806,254,432

1,692,919,135

1,542,033,472

1,381,964,755

1,554,997,939

1,383,551,713

Sources with mean Gpp-band photometr
sl # of stars with full ]
kinematic informati(@\

New in Gaia Data

‘ _R_eIEa_se_S_ ) Gaia DR2
Sources with radial velocities N |r 33,812,183 1 7,224,631
Sources with mean Grys-band magnitudes - 3_2,_2372,_157_
Sources with rotational velocities 3,524,I6?7 . o
Image from nttps:

We could use this dataset

to understand structure of
the Milky Way very precisely.

//gea.esac.esa.int/ archive/visu%l]lza/tiérﬁ/



p (1072 My /pc)

pom (1072 Mg /pc?)

Local DM
of the Milky Wa

Mass Density
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ﬂa McMillan, (2017) [71] - et | Circular velocity mass models
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2 Widmark, et al., (2021) [79] —_— Phase space spirals
g Guo, et al., (2022) [30] - —_—
E;“ McKee, et al., (2015) [57] | Vertical Jeans analysis
C:S Xia, et al., (2016) [81]
: Hagen, et al., (2018) [I5] -
5 Sivertsson, et al., (2018) [10] |-
= Guo, et al., (2020) [14] +
won, et al., (2020) (North) [11] -
aom, et al., (2020) (South) [I1] |
Wardana, et al., (2020) [82] -
Schutz, et al., (2018) [58] |- \
Buch, et al., (2019) [83] ' — N Very local analysis
0.00 0.25 0.50 0.75 1.00

pom(re) (GeV/em?)

Taking the average of the DM mass density at the Solar radius, we
find a local dark matter density: 0.47+0.05 GeV/cm?3




Dark Matter Halo

https://www.eso.org/public/images/eso1339g/

We have a model-independent

(unsupervised) ML method to

estimate dark matter density
given stellar distribution of a galaxy.

THE END?

23 / 55



Dark Matter Halo

https://www.eso.org/public/images/eso1339g/

We have a model-independent

(unsupervised) ML method to

estimate dark matter density
given stellar distribution of a galaxy.

THE END? — Of course not!

24 / 55




Simulated
data analysis

Real but clean
data analysis

Real dirty
data analysis




Galactic Dynamics and
Incomplete Datasets

;450001

aar .
i B

One of main challenge of applying this technique
is that the dataset itself is

incomplete!




No time derivative information

45.00

We only have the current snapshot of the Milky Way!




Radial Velocity Distribution
of Gaia DR3
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Incompleteness in Spacial Coverage

Not fully covered!




Intergalactic dust cloud

obscuring light from stars!

Dust Clouds
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Intergalactic dust cloud
obscuring light from stars!

Dust Obscuring Stars




Distant Galaxy — Only partial
information is available

* Available kinematic information is limited!
- Position of stars on the sky (x,y) (phot.)

- Distance to-the stars{(z)

- Radial velocity (v_z) (spec.)

FornaxDwarf

http://www.atlasoftheuniverse.com/sattelit.html



Various challenging incompleteness!

Disequilibrium Spatial Incompleteness

Lack of information

Only 3D info. available,
not the full 6D PS info.

More challenges
are waiting!




Various challenging incompleteness!

Spatial Incompleteness

g g S
e = k 4
b . -
- -

Again, machine learning can help solving
these data incompleteness problems!

Ul

Disequilibrium

\_

Intergalactic Dust Lack of information

Only 3D info. available,
not the full 6D PS info.

More challenges
are waiting!




Erasing Dust using Neural Network

and Equilibrium Assmations
. Putney, D. Shih, SHL, and M. R. Buckley, arXiv: 14236

, proceeding accepted in NeurlPS 2025 ML4PS workshop
Dusty Milky Way d = 3.25kpo
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Dust-free Milky Way a = 3.25kpe
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" We could measure dark matter density
using dust-obscured populations
J

| SdlSk stars)! - analysis in progress
UuSty MIIKY Vvay d = 3.25 kpe

b (deg)
]-OglO pobs (f)

b (deg)

Key points
« Unsupervised regression
e Dustmap is *not* used

— alternative measurement of dust!




Challenges in Analyzing dSphs -
Lack of information: how to recover?

* Faint galaxy
— less number of observed stars 0[100] ~ O[100QL ‘

* Available kinematic information is limited!
- Position of stars on the sky (x,y) (phot.)

- Radial velocity (v_z) (spec.)

* Phase space density of stars are not accessible, and hence
we cannot solve the equation of motion yet.. (Jeans equation)

on(v;) 0P on(viv;)
ot * n(?ll?j o 813@ =0

Can we recover the full 6D information somehow?

Classical solution: assume spherical symmetry 37 /55




\_

Challenges in Analyzing dSphs -
Lack of information: how to recover?

* Faint galaxy
— less number of observed stars 0[100] ~ O[100QL ‘

* Available kinematic information is limited!
- Position of stars on the sky (x,y) (phot.)

We can impose such physical constrants
to neural networks!

Can we recover the full 6D information somehow?

Classical solution: assume spherical symmetry 38/ 55




he_cl'.irk mmuater

JFlow: Model-Independent Spherical
Jeans Analysis using Equivariant
Continuous Normalizing Flows

Collaboration with
K. Hayashi (NIT, Sendai College), S. Horigome (Tohoku), arXiv:2505.00763
S. Matsumoto (IPMU), M. M. Nojiri (KEK),




Normalizing Flows:
Neural Density Estimator

Normalizing Flows (NFs) is an artificial neural network
that learns a transformation of random variables.

Base distribution (known)

3 g

2 200

150

count

- 100

- 50

Main idea: if we could find out such transformation, we can use the transformation
formula for the density estimation:

du
dw

We will use this model for estimating the phase space density f(x,v) from the data!

pw (W) = py (@) -

40/ 55



Equivariant ()
Continous Normalizing Flows

How to model spherically symmetric density using normalizing flows?
— Use Equivariant Continuous Normalizing Flows!

dx dx

— = F(Z,t > = Pf(T ¢
- Invariant (Gaussian) base distribution
- Equivariant vector field
Base distribution (known) Target distribution (data)
- 4§ 1 2045

3+ L -3 - —L 0

z This setup is very flexible. You may add
physics constraints to neural networks, too!




Normalizing Flows: How it works? ()

Base distribution
3 J

)
" B 5’ b e 3
I ‘. Z N
20 é . I’]’ l!'_\' _.t \
) -1 :“:\\\‘“‘#ﬁ .Ju- a
AR

—2 \:\ :
N WO i

ﬂ‘\ 774 7
3 IONRASSSSS——— 7

i ir
* result of a continuous normalizing flow learning infinitesimal transformations 42 / 35



Normalizing Flows: How it works? ()

Base distribution
3 J

e

N

%
—
=

o

=S

e
-
——

~

g S
coun
(W] ’L o — (%) (%)
YN TR SR T (NN T WO TR WO NN TN WO TN AN (N SN T NN S N S SN N 1
-

il

Normalizing flows can fit
arbitrary probability density,
suitable for model-independent analysis!

i it
* result of a continuous normalizing flow learning infinitesimal transformations 43 / 95




n(r)

Cored Spherical Density Model

In dSph analysis, we may further constrain the density model as
conventional analysis often only consider the following
type of densities.

- Cored density (constant density at r << 0)

- Cuspy density
ex) plummer sphere:

Equivariant CNF for modeling ) — (1 N f) ~5/2
cored density profile PAT) = 2

To

Az dz 7

= P f(Z, 1) > = rtanh (—)f(f, t)

ro
Transformation at the origin is suppressed, remaining as Gaussian-
shape. = cored density

44 / 55



n(r)

Cuspy Spherical Density Model

In dSph analysis, we may further constrain the density model as
conventional analysis often only consider the following
type of densities.

- Cored density (constant density at r << 1)

- Cuspy density

Equivariant CNF for modeling
cuspy density profile ex) NFW profile:

=) () =

Apply power-law transform to radial component
c+1

‘T‘ — ’7“‘ Jacobianocr_l?fc

to cored spherical symmetric density model

45/ 55



Results: stellar number density
& radial velocity dispersion

Stellar number density Radial velocity dispersion

10} === Estimated
9F &2 Estimated, model-based

dl? N@ 8 True: analytic
é 10 é - ¢ True: unprojected data
— [ =
T a2 TR 6
= —15T === Estimated, JFlow
o0 _20- t=-= Estimated, param. fittin 5
- True: analytic 4
0 True: unprojected data 3 ¥
—30
2 -
? 0
—2
102 10 100 100 10
r [pc] r [kpc]
Dataset: simulated dwarf spherodal galaxy from Gaia Challenge Dataset —

https://astrowiki.surrey.ac.uk/doku.php?id=tests:sphtri 46 / 55



Results: dark matter mass density

Enclosed mass Mass density

1014 LI 2 | * LI 2 ) ¥ LN A 22 | 1014 LEEE ) ¥ LN A 22 |
=== Estimated, JFlow === Estimated, JFlow
I 12 e, _
10** —=-= Estimated, param. fitting 10 —=-= Estimated, param. fitting
True: analytic o True: analytic
10 10
= 10 2 10
= 5 e
T 10 = 10
SERT = 10°
Y
104 104
102 i et : 102
9L . 2
3 ;
& g 0
—2
102 101 10° 10! 1( 102 101 10° 10! 102
r [kpc] r [kpc]

Dataset: simulated dwarf spherodal galaxy from Gaia Challenge Dataset
https://astrowiki.surrey.ac.uk/doku.php?id=tests:sphtri 47 / 55




This approach is a bit slow...
Can we improve somehow by removing

redundant component?

e a
Star catalog
{(£,0)} )
- N
Phase space density
f(Z, )
I
Gravitational accel.
a(7)
I
Mass density
p(Z)
\ J
arXiv: 2205.01129, 2305.13358

Gaia DR3:
star catalog of
the Milky Way

Neural Networks for Density Estimation:
Normalizing Flows

Uy — Uy —> -+ — Uy = (T, V)

Solving EOM (Boltzmann Equation)

9 5.2 6. 2 s@m=o0

ot or Ov

Solving Gauss's Equation

—4nGp=V -a

See also Green et. al. arXiv:2011.04673, arXiv:2205.02244
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Return to outline of strategy...

N
Star catalog
{(Z,7)}

4 - N
Phase space density
f(Z,7)

e . p
Gravitational accel.
a(7)

\ J

= N
Mass density
p(Z)

arXiv: 2205.01129, 2305.13358
See also Green et. al. arXiv:2011.04673, arXiv:2205.02244

Gaia DR3:
star catalog of
the Milky Way

Neural Networks for Density Estimation:
Normalizing Flows

—

Uy — Uy —> -+ — Uy = (T, V)

Solving EOM (Boltzmann Equation)

o _, o0 _ 0 Lo
——|—v-——|—a-% f(Z,9) =0

ot or

Solving Gauss's Equation

—4nGp=V -a
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We need just density derivative!

-

.

N
Gravitational accel.

a(7)

J

Solving EOM (Boltzmann Equation)

+ v - 97

ot

0 o _, 0
Ov

RN

Equilibriuum Collisionless Boltzmann Equation:

In order to estimate acceleration, knowing the following density derivatives

[q 0
V- —+a-

o0x

are sufficient!

Density Derivatives

of  of
or O0vU

0

av] F(7,7) = 0

-

.

~

- Gravitational accel.
a(r)
J
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Machine Learning Method for
Density Derivative Estimation?

Score function =

log-density derivative

core Matching

(Hyvariene 2005)

We want to make

™

~N
Score functions neural network
88" log f 5_) log f regressing
ions!
_ y score functions!
Explicit Score Matching Loss = (MSE Loss)
9 2
L=F,|s;(x;0)+ a_,logp( T) /\
( Equivalent
ions!
Inplicit Score Matching Loss \IOS\SfUIiCUO)
0 1
L=FE, i(7;0) + < |s:(L;0)]7
si@0) + s (@0
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GalaxyScore: Score Matching for
Galactic Dark Matter Density Estimation

Collaboration with M. R. Buckley, E. Putney, D. Shih (Rutgers)
proceeding accepted in NeurlPS 2025 ML4PS workshop 92/ 35




New faster outline of strategy!

e )
Star catalog Gaia DR3:
o star catalog of
\ {(Z,0)} ]| the Milky way
I
[S . t' "\ | Score Matching (Hyvariene 2005)
core runctions
9 tog s Ltogf || £=Fe | gosil@t) + 5lsi(@0)
|
(Gravitational accel | | SelvinaEOM (Boltzmann Equation)
o | 0 3, 3,
a7 v — +ad- — 1 1lo f,ﬁ =0
(.) [afL o=+ %] g f(Z,7)
Mass density Solving Gauss’s Equation
\ p(Z) ) —4nGp =V -d
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Proof-of-Concept Results

Acceleration along z-axis: (r,0,0) Mass density along z-axis: (7,0, 0)

2 — - 10} , — s
' === GalaxyScore
True
T
-
>
=
=
g
=
& | - .
| == GalaxyScore : 1072
~6F — True : |
e 10_4
2 L
2 2
Al Al
—2
103 102 107! 10° 10 102 103 1072 107'  10° 10 107

r [kpc] r [kpc]
Dataset: simulated dwarf spherodal galaxy from Gaia Challenge Dataset
https://astrowiki.surrey.ac.uk/doku.php?id=tests:sphtri 94 / 55




Future Timeline

2025

Gaia DR4,
SuperPFS,
i and soon!

Gaia DR3

<24 o
g o5 8
T + b} »ﬁa«f =
2o 00 €
b T

Understanding
DM in dust-free
region (halo, solar
neighborhood

Understanding
DM in dusty
region (disk)

New methods for More precision
analyzing distant and new
satellite galaxies opportunities!




Awesome collaborators of my projects:

Prof. David Shih Prof. Matthew Buckley Prof. Mihoko Nojiri Prof. Kohei Hayashi
(Rutgers) (Rutgers) (KEK) (NIT, Sendai College)

Eric Putney Prof. Shigeki Dr. Shunichi
(Ph.D. student at Rutgers, Matsumoto HorigomM e
on job market this year!) (IPMU) (Tohoku)56 / 55




Al WANTS}YOU
10,CONTRIBUTE Thank you

for listening!




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

