
1 / 55

Understanding Galactic Dark Matter
with Neural Networks

Sung Hak Lim
CTPU-PTC, IBS

Chonnam National 
University, Gwangju, 
Korea

Nov. 2025

2025년 
한국고에너지물리학회 
및 핵-입자-천체분과 
연합 워크샵



2SDSS

Phenomenology of Dark Matter appears 
in Various Length Scales!

Collider Physics
(small length scale)

Cosmology
(large length scale)

Galactic 
Astrophysics

(medium length scale?)
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But why galactic astrophysics is one of the astrophysics 
field may draw attention to high energy particle physicists?
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Because it provides us measurement and insight
about dark matter.

But why galactic astrophysics is one of the astrophysics 
field may draw attention to high energy particle physicists?
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Galaxies have various
interesting substructures, 
that can be used for studying
dark matter!

Background: Simulated galaxy h277: https://nbody.shop/data.html 
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Streams

Stars on the same orbit, originating from 
globular clusters or dwarf galaxies tidally stripped
- Orbit is visible  measuring gravity→
- Any gaps in streams may be a sign of collision 
                                                        with dark matter subhalo!
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Streams Dwarf Galaxies

A round and faint satellite galaxy orbiting the galaxy.
- whole structure is clearly visible  core - cusp problem→
- less baryonic activity 
      → good source of indirect detection measurements

🛰️

DM

DM SM

SM
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Streams

Galactic Center

Dwarf Galaxies

- central shape of dark matter halo   core - cusp problem→
- high dark matter density 
         good source of indirect detection measurements→
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Streams

Galactic Center

Dwarf Galaxies

Solar Neighborhood

DM

DM SM

SM

- nearby stars  highly precise and complete measurement →
    high quality measurement of local dark matter density→
- measruing dark matter density around solar system
                       relevant for direct detection of dark matter→
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Streams

Galactic Center

Dwarf Galaxies

We can study the details of 
galactic dark matter by analyzing 

these galactic substructures!

Solar Neighborhood
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Streams

Galactic Center

Dwarf Galaxies

In this talk, let’s focus on these two.

Solar Neighborhood
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Dwarf Galaxies

Why do we need to use 
machine learning and neural networks
to analyze these galactic substructures?

Talk title:

Understanding Galactic Dark Matter
with Neural Networks

Solar Neighborhood
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Why do we need to use 
machine learning and neural networks
to analyze these galactic structures?

Galactic Dynamics

Equation of motion: Boltzmann Equation

If phase-space density
is determined..

We can estimate the 
gravitational acceleration field!

If we consider a galaxy 
as a hydrodynamic 
system N → ∞  
consisting of stars, 
phase-space density of 
a star (probability of 
finding a star with 
given position and 
velocity)
describes the system.
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Why do we need to use 
machine learning and neural networks
to analyze these galactic structures?

Galactic Dynamics

Equation of motion: Boltzmann Equation

Introduce a simple parametric model 
of galaxy to fit data and infer
dark matter halo shape.

● Not a “local” dark matter density 
measurement!

● This strategy may not be 
the best strategy in the current
data-driven era of astrophysics!

Classic inference method:
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Astrophysics is 
becoming 
a data science!
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Large Surveys
(Gaia, LSST, JWST, DESI …)

(N-body simulations...)

Public datasets

Machine Learning:
robust tool for

data driven discovery!

You can discover new things 
(for example, dark matter) 

by yourself!
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Why do we need to use 
machine learning and neural networks
to analyze these galactic structures?

Galactic Dynamics

Equation of motion: Boltzmann Equation

Neural Networks for 
arbitrary density estimation:
  - Normalizing Flows

Neural Network

This is a fully 
model-independent

strategy!

Machine-learning based inference method:
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Normalizing Flows:
Neural Network learning a Transformation

Normalizing Flows (NFs) is an artificial neural network that learns a transformation
of random variables.

T

Main idea: if we could find out such transformation, we can use the transformation 
formula for the density estimation:  

This formula can be used for training normalizing flows, too:
Maximum likelihood estimation

Neural Network



19 / 55 

Learned transformation
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Outline of Strategy
Star catalog

Phase space density

Gravitational accel.

Mass density

  Neural Networks for Density Estimation:
  Normalizing Flows

  Solving EOM (Boltzmann Equation) 

  Solving Gauss’s Equation

Gaia DR3:
star catalog of 
the Milky Way

arXiv: 2205.01129, 2305.13358
See also Green et. al. arXiv:2011.04673, arXiv:2205.02244 
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# of stars with full 
kinematic information

A Snapshot of Milky Way 
from Gaia

Recently, Gaia mission from European
Space Agency (ESA) released 
a new catalog containing very 
detailed measurement of
stars in the Milky Way that can be
used for various physics analysis.

Image from https://gea.esac.esa.int/archive/visualization/

We could use this dataset 
to understand structure of
the Milky Way very precisely.
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0.32±0.18 GeV/cm3

(McKee mass model)

Taking the average of the DM mass density at the Solar radius, we
find a local dark matter density: 0.47±0.05 GeV/cm3  

Local DM Mass Density 
of the Milky Way
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THE END?

Stars

?

Dark Matter Halo

https://www.eso.org/public/images/eso1339g/

We have a model-independent 
(unsupervised) ML method to 
estimate dark matter density 

given stellar distribution of a galaxy.
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THE END?  Of course not!→

Stars

?

Dark Matter Halo

https://www.eso.org/public/images/eso1339g/

We have a model-independent 
(unsupervised) ML method to 
estimate dark matter density 

given stellar distribution of a galaxy.



25 / 55 

Simulated 
data analysis

Real but clean
data analysis

Real dirty
data analysis
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Galactic Dynamics and
Incomplete Datasets 

One of main challenge of applying this technique
is that the dataset itself is 

incomplete!
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No time derivative information

We only have the current snapshot of the Milky Way!
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Radial Velocity Distribution
of Gaia DR3
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Incompleteness in Spacial Coverage

Not fully covered!
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Dust Clouds
Intergalactic dust cloud

obscuring light from stars!
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Dust Obscuring Stars
Intergalactic dust cloud

obscuring light from stars!
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Distant Galaxy – Only partial 
information is available

Fornax Dwarf
http://www.atlasoftheuniverse.com/sattelit.html

Local Group

Milky Way from  Ground

● Available kinematic information is limited!
- Position of stars on the sky (x, y)  (phot.)
- Distance to the stars (z)
- Proper motion of stars on the sky (v_x, v_y)
- Radial velocity (v_z)   (spec.)
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Various challenging incompleteness!

Intergalactic Dust

Disequilibrium Spatial Incompleteness

Lack of information

x
y

vz

Only 3D info. available,
not the full 6D PS info.

More challenges 
are waiting!
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Various challenging incompleteness!

Intergalactic Dust

Disequilibrium Spatial Incompleteness

Lack of information

x
y

vz

Only 3D info. available,
not the full 6D PS info.

More challenges 
are waiting!

Again, machine learning can help solving
these data incompleteness problems!
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Erasing Dust using Neural Network 
and Equilibrium Assmptions

Dusty Milky Way

Dust-free Milky Way

E. Putney, D. Shih, SHL, and M. R. Buckley, arXiv:2412.14236
proceeding accepted in NeurIPS 2025 ML4PS workshop 
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Erasing Dust using Neural Network 
and Equilibrium Assmptions

Dusty Milky Way

Dust-free Milky Way

E. Putney, D. Shih, SHL, and M. R. Buckley, arXiv:2412.14236
proceeding accepted in NeurIPS 2025 ML4PS workshop 

We could measure dark matter density 
using dust-obscured populations 
(disk stars)!  - analysis in progress...

Key points
● Unsupervised regression
● Dustmap is *not* used

 alternative measurement of dust!→
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Challenges in Analyzing dSphs - 
Lack of information: how to recover?

● Faint galaxy
 less number of observed stars O[100] ~ O[1000]→

● Available kinematic information is limited!
- Position of stars on the sky (x, y)  (phot.)
- Distance to the stars (z)
- Proper motion of stars on the sky (v_x, v_y)
- Radial velocity (v_z)   (spec.)

● Phase space density of stars are not accessible, and hence
we cannot solve the equation of motion yet.. (Jeans equation) 

x
y

vz

Can we recover the full 6D information somehow?

Classical solution: assume spherical symmetry
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Challenges in Analyzing dSphs - 
Lack of information: how to recover?

● Faint galaxy
 less number of observed stars O[100] ~ O[1000]→

● Available kinematic information is limited!
- Position of stars on the sky (x, y)  (phot.)
- Distance to the stars (z)
- Proper motion of stars on the sky (v_x, v_y)
- Radial velocity (v_z)   (spec.)

● Phase space density of stars are not accessible, and hence
we cannot solve the equation of motion yet.. (Jeans equation) 

x
y

vz

Can we recover the full 6D information somehow?

Classical solution: assume spherical symmetry

We can impose such physical constrants 
to neural networks!
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JFlow: Model-Independent Spherical 
Jeans Analysis using Equivariant

Continuous Normalizing Flows
Collaboration with
K. Hayashi (NIT, Sendai College), S. Horigome (Tohoku), 
S. Matsumoto (IPMU), M. M. Nojiri (KEK), 

arXiv:2505.00763
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Normalizing Flows:
Neural Density Estimator

Normalizing Flows (NFs) is an artificial neural network 
that learns a transformation of random variables.

NF

Base distribution (known) Target distribution (data)

Main idea: if we could find out such transformation, we can use the transformation 
formula for the density estimation:  

We will use this model for estimating the phase space density f(x,v) from the data.



41 / 55 

Equivariant
Continous Normalizing Flows

Base distribution (known) Target distribution (data)

How to model spherically symmetric density using normalizing flows?
   Use Equivariant Continuous Normalizing Flows!→

Equiv.
CNF

  - Invariant (Gaussian) base distribution
  - Equivariant vector field

This setup is very flexible. You may add
physics constraints to neural networks, too!

n(r)
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Normalizing Flows: How it works?
Base distribution

Target distribution

* result of a continuous normalizing flow learning infinitesimal transformations

n(r)
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Normalizing Flows: How it works?
Base distribution

Target distribution

* result of a continuous normalizing flow learning infinitesimal transformations

Normalizing flows can fit 
arbitrary probability density,

suitable for model-independent analysis!

n(r)
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Cored Spherical Density Model
In dSph analysis, we may further constrain the density model as
conventional analysis often only consider the following 
type of densities.
  - Cored density (constant density at r << 0)
  - Cuspy density

Equivariant CNF for modeling 
cored density profile

ex) plummer sphere:

Transformation at the origin is suppressed, remaining as Gaussian-
shape.  cored density→

n(r)
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Cuspy Spherical Density Model
In dSph analysis, we may further constrain the density model as
conventional analysis often only consider the following 
type of densities.
  - Cored density (constant density at r << 1)
  - Cuspy density

Equivariant CNF for modeling 
cuspy density profile ex) NFW profile:

to cored spherical symmetric density model

Apply power-law transform to radial component 

n(r)
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Results: stellar number density
& radial velocity dispersion

Dataset: simulated dwarf spherodal galaxy from Gaia Challenge Dataset
https://astrowiki.surrey.ac.uk/doku.php?id=tests:sphtri
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Results: dark matter mass density

Dataset: simulated dwarf spherodal galaxy from Gaia Challenge Dataset
https://astrowiki.surrey.ac.uk/doku.php?id=tests:sphtri
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This approach is a bit slow…
Can we improve somehow by removing 
redundant component?

Star catalog

Phase space density

Gravitational accel.

Mass density

  Neural Networks for Density Estimation:
  Normalizing Flows

  Solving EOM (Boltzmann Equation) 

  Solving Gauss’s Equation

Gaia DR3:
star catalog of 
the Milky Way

arXiv: 2205.01129, 2305.13358
See also Green et. al. arXiv:2011.04673, arXiv:2205.02244 
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Return to outline of strategy...
Star catalog

Phase space density

Gravitational accel.

Mass density

  Neural Networks for Density Estimation:
  Normalizing Flows

  Solving EOM (Boltzmann Equation) 

  Solving Gauss’s Equation

Gaia DR3:
star catalog of 
the Milky Way

arXiv: 2205.01129, 2305.13358
See also Green et. al. arXiv:2011.04673, arXiv:2205.02244 
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We need just density derivative!
Gravitational accel.

  Solving EOM (Boltzmann Equation) 

Equilibriuum Collisionless Boltzmann Equation:

In order to estimate acceleration, knowing the following density derivatives
are sufficient!

Density Derivatives
Gravitational accel.
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Machine Learning Method for
Density Derivative Estimation?

Score functions

Score function = log-density derivative

Inplicit Score Matching Loss

We want to make 
neural network

regressing 
score functions!

Score Matching  (Hyvariene 2005)

Explicit Score Matching Loss = (MSE Loss)

Equivalent
loss functions!
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GalaxyScore: Score Matching for 
Galactic Dark Matter Density Estimation

Collaboration with M. R. Buckley, E. Putney, D. Shih (Rutgers)
proceeding accepted in NeurIPS 2025 ML4PS workshop 
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Star catalog

Gravitational accel.

Mass density

  Solving EOM (Boltzmann Equation) 

  Solving Gauss’s Equation

Gaia DR3:
star catalog of 
the Milky Way

New faster outline of strategy!

Score functions
Score Matching  (Hyvariene 2005)
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Proof-of-Concept Results

Dataset: simulated dwarf spherodal galaxy from Gaia Challenge Dataset
https://astrowiki.surrey.ac.uk/doku.php?id=tests:sphtri
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Future Timeline

2025 2026

Gaia DR3
Gaia DR4,
SuperPFS,
and so on!

Understanding
DM in dust-free

region (halo, solar 
neighborhood)

Understanding
DM in dusty
region (disk)

More precision
and new 

opportunities!

New methods for 
analyzing distant 
satellite galaxies
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Awesome collaborators of my projects:

Prof. Shigeki 
Matsumoto

 (IPMU)

Dr. Shunichi 
Horigome
 (Tohoku)

Prof. Mihoko Nojiri 
(KEK)

Prof. Kohei Hayashi
 (NIT, Sendai College)

Prof. David Shih 
(Rutgers)

Prof. Matthew Buckley 
(Rutgers)

Eric Putney 
(Ph.D. student at Rutgers,
on job market this year!)
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Thank you 
for listening!
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