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Overview
● Motivation: precision calorimetry for FCC-ee

● Dual-readout calorimeter basics

● DRC prototype and test-beam

● Simulation & reconstruction

● Deep-learning-based PID & energy regression

● Summary & outlook
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Future Circular Lepton Collider(FCC-ee)
● FCC-ee targets:

○ W, Z, Higgs precision measurements
○ Search for beyond-SM signals
○ High-statistics program requiring sub-percent 

systematics

● Needs for advanced calorimeters:
○ Insufficient jet energy resolution

■ limits W/Z separation
■ degrades Higgs recoil and 𝜈𝜈 final states

○ Non-linearity of hadronic energy response
■ biases precision measurements

○ Limited particle identification (PID)
■ reduced sensitivity to rare decays and 

complex final states

Image of rare process
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Calorimeter Fundamentals
● A high energy particle makes shower of particles 

interacting with material.

● Electromagnetic(EM) shower 
○ Initiated by electron and 𝛾
○ Chain reaction of pair production and 

bremsstrahlung 

● Hadronic shower
○ Initiated by hadrons(𝜋+, p, n, …)
○ Complex structure due to strong interaction.
○ Nuclear binding energy, neutrons, slow hadrons

EM shower

Hadronic shower
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Hadronic shower energy fluctuation
● Hadronic shower measurements suffer from:

○ Non-linearity of energy response
■ Invisible energy losses
■ EM fraction rises with energy

○ Poor hadronic energy resolution
■ Large event-by-event fluctuation

● Fundamental issue:
○ Non-compensation(e/h ≠ 1)
○ EM fraction fluctuation
○ Invisible energy losses

■ nuclear binding energy
■ neutrons & slow hadrons
■ non-ionizing energy
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Signal yield for hadronic shower



Dual-readout calorimeter
● Dual-readout calorimeter has two type of readout 

from Cherenkov material and scintillation material.
● Event-by-event compensation of fluctuation 

between hadronic and EM component.

● Scintillation fiber
○ Light from both EM and hadronic components

● Cherenkov fiber
○ Light only from fast particles (mostly e- in EM 

subshowers)
○ Effectively measure the EM component only

Fiber-b
ased DRC
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Scintillating fiber
EM+hadronic

e-  𝜋+    n

Cherenkov fiber
EM only



● For EM showers, both C and S are proportional 
to the total energy.

○ Initial Calibration as C=S=E=EEM at e- shower

● At Hadronic shower, proportion of hadronic 
component makes response to S.

○ C=EEM,  S=EEM+(1-𝜒)Ehad 

○ total E=EEM+Ehad=C+(S-C)/(1-𝜒)

○ Event-by-event compensation
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Dual-readout Method



Korea DRC collaboration
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● Calorimeter Prototype
○ Fiber-module manufacturing feasibility 

study

○ Prototype test beam experiments

● Simulation
○ Absorber performance studies

■ Cu, Pb, W, Brass

○ ML-based PID & energy reconstruction

○ 3D hit position reconstruction



Test beam experiment
● EM performance: linearity and resolution
● Hadron performance: linearity and resolution
● Time resolution and position resolution
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Simulation setup

● Simulation performed by GEANT4.
○ Dual-readout calorimeter only.
○ No magnetic field.
○ Copper as absorber.
○ SiPM readout count photoelectron.

● Particle guns are simulated at the 
calorimeter center
○ e-, 𝛾, 𝜋+, 𝜋0 (→𝛾𝛾)
○ Energy range in 1 - 100 GeV 
○ Incident region around a tower 2.5°×2.5°

(𝛥𝜙:0.044 𝛥𝜃:0.044)

 

Dual readout Calorimeter (cross-section)

Particle gun
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Readout
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Calorimeter geometry
● Fiber implementation

○ Scintillation fiber and Cherenkov fiber in check 
pattern(pitch: 1.5mm) 

○ fiber diameter: 1mm, SiPM width: 1.2mm
● Tower geometry

○ Length: 2m
○ Angular coverage: ~1.15°(𝛥𝜃:0.022,𝛥𝜙:0.022)
○ Fiber array perpendicular to tower base plane

● Tower arrangement
○ Position

■ barrel: r = 1.8m cylindrical
■ endcap: z = ±2.556m circular

○ Longitudinally aligned toward the center
○ Total 283(𝜃)×182(𝜙) towers

Calorimeter geometry

Hemisphere view

Front view

Side view

1.8m 2.556m
Barre

l

Endcap

2m
Tower geometry
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Scintillation fiber
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Electron shower
● Calibrate average C,S matched with Egen

● C and S responses are linear at 1-100 GeV

● (C+S)/2 shows the best linearity and resolution.

10 GeV 50 GeV
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𝜋+ shower
● Responses are calibrated with prior e- shower.

● C and S responses are reduced than Egen due to 
invisible energy loss.

● Dual-readout correction restores linearity.
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3D Shower reconstruction
● Photons generated deeper in the fiber arrive earlier at the readout.
● The longitudinal position of photon reconstructed using time 

differences.

Earlier
signal

Readout

Later
signal

Front

Rear

𝜋+ shower
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Deep learning for PID
● Using C,S responses for PID is limited.

○ Overlapped region but different initial energy
○ Need for proper energy correction method.

● We apply deep learning to exploit:
○ Timing, position, and fiber-type information to 

utilize correlations in detailed shower shapes

● A multilayer perceptron (MLP) is used as the 
basic model for PID and regression.

Multilayer Perceptron

Electron shower 𝜋+  shower
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Deep learning model architecture
● Three input branches:

○ Response block: total C and S
○ Readout block: per-readout position, 

time, fiber type
○ Reco3D block: reconstructed 3D hit 

positions
● Each branch:

○ Feature extraction with Mamba 
blocks and MLPs

○ Global pooling to obtain 
128-dimensional features

● Final stage:
○ Branch features to PID and 

energy prediction

Mamba block ×6
[N2,64]🡪[N2,64]

MLP 
Input[N2,D2]🡪[N2,64]

Maxpooling
[N2,64]🡪[64]

MLP
[64]🡪[128]

MLP
Input[D1]🡪[128]

Readout block
N2[1000],D2[x,y,z,t,type,Npe]

Reco3D block
N3[500],D3[x,y,z,type,Npe]

Mamba block ×6
[N3,64]🡪[N3,64]

MLP 
Input[N3,D3]🡪[N3,64]

Maxpooling
[N3,64]🡪[64]

MLP
[64]🡪[128]

Response block
D1[ΣCNpe,ΣSNpe]

MLP
Concat([128,128,128]) 🡪 output[PID,energy]
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PID performance
● Model compared with different input block

○ Response block: total C,S responses

○ Combination of response block, Readout block, 
Reco3D block

● Position and timing information significantly 
improve PID:

○ EM vs hadron efficiency > 99%

○ 𝜋0 shower discriminated with single 𝛾 shower.

● A model without position and timing cannot 
discriminate 𝜋0 

 and 𝛾 
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PID performance by energy
● EM vs hadron efficiency > 99% above 10 GeV.
● 𝜋0 vs 𝛾 efficiency > 90% below ~50 GeV

○ At FCC-ee, most 𝜋0
 are expected below ~40 GeV
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C,S,position,time



Energy reconstruction
● ML model provides better energy resolution than the 

analytical dual-readout correction.
● In particular, the constant term is significantly reduced, 

indicating improved high-energy behavior.
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Outlook
● Validate simulation using TB2025 data: quantify data–MC differences in 

shower profile

● Incorporate realistic detector effects (saturation, crosstalk, attenuation, jitter) 
into ML training

● Fine-tune ML models on test-beam data for simulation to data domain 
adaptation

● Extend ML reconstruction to jet-like topologies

● Evaluate impact of particle reconstruction on physics performance

○ jet energy resolution, π⁰/γ separation, and precision measurements at FCC-ee
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Summary
● Dual-readout calorimeter compensates shower fluctuations, improving 

hadronic energy resolution.

● The Korean DRC collaboration has made major progress in prototype 
development and test-beam experiment.

● ML-based PID exploits spatial and timing shower features, achieving strong 
EM–hadronic discrimination and π⁰/γ separation, with precise energy 
reconstruction.

● These particle reconstruction studies indicate strong potential to expand 
accessible physics channels and improve calorimetric performance in future.
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Backups
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Test beam setup
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Test beam setup
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Testbeam: EM performance
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Testbeam: hadron performance
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Testbeam: time resolution
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Testbeam: position reconstruction
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Simulation signal processing
● Light measured by silicon photomultipliers(SiPMs).
● SiPM signal has fast rising exponential decay by 

photon deposit
● Reconstruct photon deposit from deconvolution of 

SiPM signal.

SiPM 
simulation

Signal simulation

Signal processing

Impulse response
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Detector simulation
● Geant4 simulation for shower particle inside calorimeter.
● Readouts count photon at end of fiber.
● Photon counts are processed to signal with SiPM simulation.

● Fast simulation algorithm applied for photon propagation inside fiber.
● Full simulation

○ compute total reflection and attenuation of every path
○ photons which not reach to readout are also computed

● Fast simulation
○ Photon selected in angular window to reach the readout
○ apply expected time of flight and attenuation
○ place photon to end of fiber

Full simulation Fast simulation

Attenuation applied

Readout
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SiPM saturation
SiPM signal saturated at high photon flux

Scintillation fiber yield much more photon than Cherenkov fiber
S
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Calibration
● Reconstructed photon deposit → calibration
● Energy dependent scale factor applied at scintillation channel.

 

 Raw response Calibrated response
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deep learning input
D1(ΣCNpe,ΣSNpe)🡪 Response block 

1000 points of D2(x,y,z,t,type,Npe) 🡪 Readout block 

500 points of D3(x,y,z,type,Npe) 🡪 Reco3D block

Each block extract features for PID and energy

Readout block([1000,D2])🡪[128]

Reco3D block([500,D3])🡪[128]

Response block([D1])🡪[128]

MLP([128,128,128])🡪[PID, Energy]

C,S 2d scatter
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Model training setup

● MLP(S,C), Mamba (readout position, signal timing, amplitude, fiber type), 
Mamba(hit position, amplitude, fiber type)

○ 3 model combined to MLP

○ 2 Million parameters

● 40k dataset each particle 50% train 20% validation 30% test

● Training time - 1 day( mostly input lag) torch v2.5.1
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State Space Model



Fiber bundling performance
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Missing energy 
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