Charm Physics at Belle and Belle II

Jaeyoung Kim

Department of Physics, Yonsei University

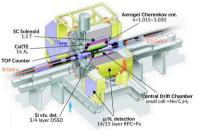
2025년 한국고에너지물리학회 및 핵-입자-천체분과 연합 워크샵 Nov. 20, 2025

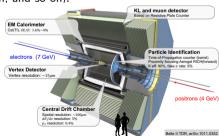
Outline

- Charm Physics at Belle/Belle II
- Branching fractions and searches for rare decays
 - $D_{-0}^*(2317)^+ \to D_{-}^{*+} \gamma$
 - $\Xi_{s}^{0} \to \Xi_{s}^{0} h(h = \pi^{0}, n, n')$
 - $\Xi_c^0 \to \Lambda h(h=\pi^0,n,n')$
 - $\Xi_c^+ \to pK_c^0, \Lambda \pi^+, \Sigma^0 \pi^+$
 - $\Xi_c^+ \to \Sigma^+ K_S^0, \Xi^0 \pi^+, \Xi^0 K^+$
 - $\Lambda_c^+ \to p K_c^0 \pi^0$
- Charm CP violation search
 - \bullet $D \rightarrow \pi\pi$
 - $D^0 \to \pi^+ \pi^- \pi^0$
 - $D^0 \rightarrow K_c^0 K_c^0$
 - $\bullet \equiv \Xi^+ \rightarrow \Sigma^+ h^+ h^-, \Lambda^+ \rightarrow ph^+ h^- (h = \pi, K)$
- Korean group in Belle II charm physics
- Summary

Outline

- 1 Charm Physics at Belle/Belle II
- 2 Branching fractions and searches for rare decays
 - $D_{c0}^*(2317)^+ \to D_{c}^{*+} \gamma$
 - $\bullet \ \Xi_c^0 \rightarrow \Xi_c^0 h(h=\pi^0,\eta,\eta')$
 - $\Xi_c^0 \to \Lambda h(h=\pi^0,\eta,\eta')$
 - $\Xi_c^+ \to pK_S^0, \Lambda \pi^+, \Sigma^0 \pi^+$
 - $\Xi_c^+ \to \Sigma^+ K_S^0, \Xi^0 \pi^+, \Xi^0 K^+$
 - $\Lambda_c^+ \to p K_S^0 \pi^0$
- 3 Charm CP violation search
 - $D \rightarrow \pi\pi$


 - $D^0 \to K_S^0 K_S^0$
 - $\Xi_c^+ \to \Sigma^+ h^+ h^-, \Lambda_c^+ \to ph^+ h^- (h = \pi, K)$
- 4 Korean group in Belle II charm physics
- Summary


Charm physics at Belle and Belle II

- Belle and Belle II operate at e^+e^- center-of-mass energy $\sqrt{s}=10.58\,\mathrm{GeV}$ to produce the $\Upsilon(4S)$, which decays to $B\bar{B}$ with branching fraction >96%.
- ullet Continuum production $e^+e^- o qar q$ with $q\in\{u,d,s,c\}$ has a large cross section.
- Mainly use prompt charm from $e^+e^- \to c\bar{c}(\sigma \approx 1.3\,\mathrm{nb})$ for charm analyses, rather than charm from B decays.
- Produced charm mesons and baryons: $D^{(*)}$, $D_s^{(*)}$, Λ_c^+ , $\Xi_c^{+,0}$, and Ω_c^0 .
- Datasets & detector

Charm Physics at Belle/Belle II

- Belle (1999–2010): $\int \mathcal{L}dt = 980 \, \text{fb}^{-1}$.
- Belle II (2019–present): $\int \mathcal{L}dt = 575\,\mathrm{fb}^{-1}$ (Run 1: 428 fb^{-1}); improvements over Belle(vertexing and tracking performance, ECL cluster background suppression, and so on).

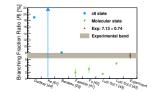
Belle detector

Belle II detector

Outline

Charm Physics at Belle/Belle II

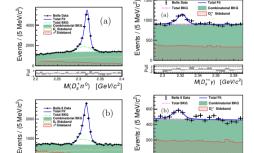
- Branching fractions and searches for rare decays
 - $D_{\epsilon 0}^*(2317)^+ \to D_{\epsilon}^{*+} \gamma$
 - $\Xi_{s}^{0} \to \Xi_{s}^{0} h(h = \pi^{0}, n, n')$
 - $\Xi_c^0 \to \Lambda h(h=\pi^0,n,n')$
 - $\Xi_c^+ \to pK_c^0, \Lambda \pi^+, \Sigma^0 \pi^+$
 - $\Xi_c^+ \to \Sigma^+ K_S^0, \Xi^0 \pi^+, \Xi^0 K^+$ $\Lambda_c^+ \to p K_S^0 \pi^0$
- - $O D \rightarrow \pi\pi$
 - $D^0 \rightarrow \pi^+\pi^-\pi^0$
 - $D^0 \rightarrow K_c^0 K_c^0$
 - \bullet $\Xi_{+}^{+} \rightarrow \Sigma_{-}^{+} h^{+} h^{-} . \Lambda_{+}^{+} \rightarrow ph^{+} h^{-} (h = \pi, K)$


$D_{\rm s0}^*(2317)^+ o D_{\rm s}^{*+} \gamma$ at Belle and Belle II

- First observation.
- Motivation: mass of $D_{s0}^*(2317)^+$ is much lower than the quark model predictions of the lowest $c\bar{s}$ mesons with the corresponding J^P quantum number.
- Precise absolute branching fraction is unknown.

Mode		Fraction (Γ_i / Γ)	Conf. Level	P(MeV/c)	
Γ_1	$D_s^+\pi^0$	(100+0) %		298	~
Γ_2	$D_s^+ \gamma$	<5 %	CL=	90% 323	~
Γ_3	$D_s^*(2112)^+\gamma$	<6 %	CL	=90%	v

• Branching ratio measurements: $\frac{\mathcal{B}(D_{s0}^{+}(2317)^{+} \rightarrow D_{s}^{+} + \gamma)}{\mathcal{B}(D_{s0}^{+}(2317)^{+} \rightarrow D_{s}^{+} + \pi^{0})}$ decay chain: $D_{s}^{+}(\rightarrow \phi\pi, K^{*}K), D_{s}^{*}+(\rightarrow D_{s}^{+}\gamma)$

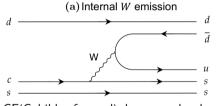

Comparison between theoretical predictions and measurement:

predictions based on the light front quark model [67] and chiral quark model [20] agree with measurement under the pure $c\bar{s}$ state.

Dataset: Belle 980fb^{-1} , Belle II 428fb^{-1}

PDG: $m(D_{s0}^*(2317)^+) = 2317.8 \pm 0.5 \text{ MeV}/c^2$

Fits: Belle (top) and Belle II (bottom).


 $M(D_{+}^{+}\pi^{0})$ [GeV/c²]

• Ratio= $(7.14 \pm 0.70_{\text{stat.}} \pm 0.23_{\text{syst.}})\%$

 $M(D_c^{++}v) = [GeV/c^2]$

$$\Xi_c^0 o \Xi^0 h(h=\pi^0,\eta,\eta')$$
 at Belle and Belle II

Diagrams:

- (b) W exchange

 W

 U

 U

 U

 U

 U

 U

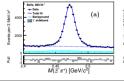
 S

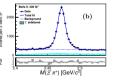
 S

 S
- CF(Cabibbo-favored) decays and only nonfactorizable amplitudes contribute to.
 - For theoretical predictions, various approaches have been developed.

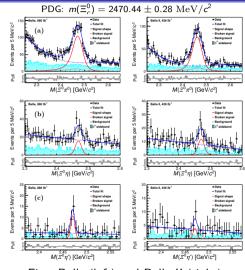
$\underline{\Xi}^0_c \rightarrow \underline{\Xi}^0 h(h=\pi^0,\eta,\eta')$ at Belle and Belle II

HEP 10 (2024) 045


First observations.

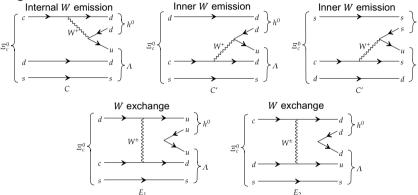

Charm Physics at Belle/Belle II

- Abundant measurements on Ξ_c^0 have been done by Belle, including $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) \to \text{use}$ as reference.
- Branching ratio measurements:


$$\frac{\mathcal{B}(\Xi_c^0 \to \Xi^0 h)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)} = \frac{N_{\Xi^0 h}}{N_{\Xi^- \pi^+}} \cdot \frac{\epsilon_{\Xi^- \pi^+}}{\epsilon_{\Xi^0 h}} \cdot \frac{\mathcal{B}(\Xi^- \to \Lambda \pi^-)}{\mathcal{B}(\Xi^0 \to \Lambda \pi^0) \mathcal{B}(\pi^0 \to \gamma \gamma) \mathcal{B}(h)}$$

Mode	Belle yield	$\varepsilon_{\text{Belle}}$ (%)	Belle II yield	$\varepsilon_{\text{Belle II}}$ (%)
$\Xi_c^0 \to \Xi^- \pi^+$	$(363 \pm 3) \times 10^{2}$	13.92 ± 0.05	$(137 \pm 2) \times 10^{2}$	13.38 ± 0.03
$\Xi_c^0 \rightarrow \Xi^0 \pi^0$	1315 ± 66	1.09 ± 0.01	869 ± 46	1.71 ± 0.01
$\Xi_c^0 \rightarrow \Xi^0 \eta$	81 ± 15	0.80 ± 0.01	60 ± 11	1.12 ± 0.01
$\Xi_c^0 \rightarrow \Xi^0 \eta'$	23 ± 6	0.46 ± 0.01	8 ± 4	0.81 ± 0.01

Mode	Belle	Belle II	Combined
$\mathcal{B}(\Xi_c^0 o \Xi^0 \pi^0)/\mathcal{B}(\Xi_c^0 o \Xi^- \pi^+)$	$0.47 \pm 0.02 \pm 0.03$	$0.51 \pm 0.03 \pm 0.05$	$0.48 \pm 0.02 \pm 0.03$
$\mathcal{B}(\Xi_c^0\to\Xi^0\eta)/\mathcal{B}(\Xi_c^0\to\Xi^-\pi^+)$	$0.10 \pm 0.02 \pm 0.01$	$0.14 \pm 0.02 \pm 0.02$	$0.11 \pm 0.01 \pm 0.01$
$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')/\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$0.12 \pm 0.03 \pm 0.01$	$0.06 \pm 0.03 \pm 0.01$	$0.08 \pm 0.02 \pm 0.01$

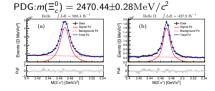

Fits: Belle (left) and Belle II (right).

$\Xi_c^0 \to \Lambda h(h=\pi^0,\eta,\eta')$ at Belle and Belle II

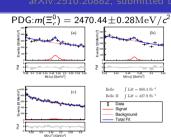
arXiv:2510.20882, submitted to PRD

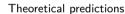
Diagrams:

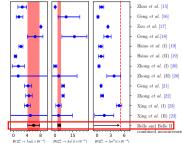
Charm Physics at Belle/Belle II


- Theorists have provided a lot of predictions of the $B_c \to BM$ decays, where B_c denotes the anti-triplet charm baryon and B(M) the octet baryon(meson).
- All SCS(singly Cabibbo-suppressed) decays, first two observations(η and η').

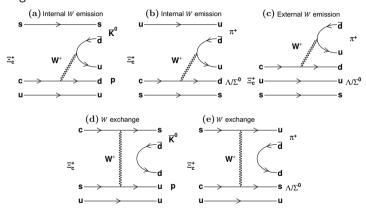
$\Xi_c^0 o \Lambda h(h=\pi^0,\eta,\eta')$ at Belle and Belle II


- Branching ratio measurements
 - Reference mode: $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$.
- Stack Belle and Belle II data.
- Absolute branching ratio:


$$\mathcal{B}(\Xi_c^0 \to \Lambda \eta) = (5.95 \pm 1.30 \pm 0.32 \pm 1.13) \times 10^{-4}$$
 $\mathcal{B}(\Xi_c^0 \to \Lambda \eta') = (3.55 \pm 1.17 \pm 0.17 \pm 0.68) \times 10^{-4}$ $\mathcal{B}(\Xi_c^0 \to \Lambda \pi^0) < 5.2 \times 10^{-4} (90\% \text{ C.L. limit})$ uncertainties: stat., syst., and from $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$.


Decays	N_{fit}
$\Xi_c^0 \to \Xi^- \pi^+$ (Belle)	30230 ± 281
$\Xi_c^0 \rightarrow \Xi^- \pi^+$ (Belle II)	11579 ± 161
$\Xi_c^0 \to \Lambda \eta, \eta \to \gamma \gamma$ $\Xi_c^0 \to \Lambda \eta, \eta \to \pi^+ \pi^- \pi^0$	262 ± 57
$\begin{split} \Xi_c^0 &\to \Lambda \eta', \eta' \to \eta \pi^+ \pi^-, \eta \to \gamma \gamma \\ \Xi_c^0 &\to \Lambda \eta', \eta' \to \eta \pi^+ \pi^-, \eta \to \pi^+ \pi^- \pi^0 \\ \Xi_c^0 &\to \Lambda \eta', \eta' \to \pi^+ \pi^- \gamma \end{split}$	101 ± 33
$\Xi_c^0 \to \Lambda \pi^0$	190 ± 120

 Theoretical predictions: various approaches with SU(3)_F symmetry.

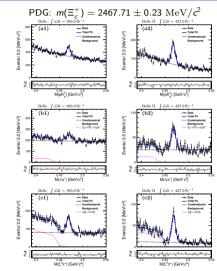


Diagrams:

Charm Physics at Belle/Belle II

• First observation of SCS decays $\Xi_c^+ \to p K_S^0$, $\Lambda \pi^+$, $\Sigma^0 \pi^+$, each with significance $> 10\sigma$, using the combined Belle and Belle II samples.

$\Xi_c^+ \to p K_S^0$, $\Lambda \pi^+$, $\Sigma^0 \pi^+$ at Belle and Belle II

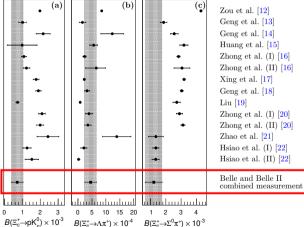

IHEP 03 (2025) 061

- Use the well-measured normalization mode $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ as the reference.
- Branching-fraction ratios are determined as $\frac{\mathcal{B}(\Xi_c^+ \to \mathrm{sig})}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)} = \frac{N_{\mathrm{sig}}}{N_{\Xi^- \pi^+ \pi^+}} \cdot \frac{\epsilon_{\Xi^- \pi^+ \pi^+}}{\epsilon_{\mathrm{sig}}} \cdot \frac{\mathcal{B}_{\mathrm{ref,int}}}{\mathcal{B}_{\mathrm{sig,int}}}.$
- Absolute branching fraction:

Charm Physics at Belle/Belle II

• uncertainties: statistical, systematic, and external (from $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$).

Mode	\mathcal{B} [10 ⁻⁴]
$\mathcal{B}(\Xi_c^+ o ho\mathcal{K}_S^0)\ \mathcal{B}(\Xi_c^+ o\Lambda\pi^+)$	$(7.16 \pm 0.46 \pm 0.20 \pm 3.21)$ $(4.52 \pm 0.41 \pm 0.26 \pm 2.03)$
$\mathcal{B}(\Xi_c^+ o \Sigma^0 \pi^+)$	$(1.20 \pm 0.08 \pm 0.07 \pm 0.54)$



Fits: Belle (left) and Belle II (right).

$\Xi_c^+ \to p K_S^0$, $\Lambda \pi^+$, $\Sigma^0 \pi^+$ at Belle and Belle II

• Theoretical branching fraction predictions.

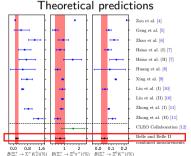
Charm Physics at Belle/Belle II

- Various approaches with $SU(3)_F$ symmetry.
- Several theory predictions are in tension with these values.

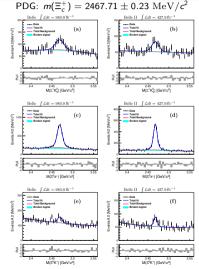
- [12] J. Zou, F. Xu, G. Meng and H.-Y. Cheng, Two-body hadronic weak decays of antitriplet charmed baryons, Phys. Rev. D 101 (2020) 014011 [arXiv:1910.13626] [INSPIRE].
- [13] C.Q. Geng, Y.K. Hsiao, C.-W. Liu and T.-H. Tsai, Antitriplet charmed baryon decays with SU(3) flavor symmetry, Phys. Rev. D 97 (2018) 073006 [arXiv:1801.03276] [INSPIRE].
- [14] C.Q. Geng, C.-W. Liu and T.-H. Tsai, Asymmetries of anti-triplet charmed baryon decays, Phys. Lett. B 794 (2019) 19 [arXiv:1902.06189] [INSPIRE].
- [15] F. Huang, Z.-P. Xing and X.-G. He, A global analysis of charmless two body hadronic decays for anti-triplet charmed baryons, JHEP 03 (2022) 143 [Erratum ibid. 09 (2022) 087] [arXiv:2112.10586] [INSPIRE].
- [16] H. Zhong, F. Xu, Q. Wen and Y. Gu, Weak decays of antitriplet charmed baryons from the perspective of flavor symmetry, JHEP 02 (2023) 235 [arXiv:2210.12728] [INSPIRE].
- [17] Z.-P. Xing, X.-G. He, F. Huang and C. Yang, Global analysis of measured and unmeasured hadronic two-body weak decays of antitriplet charmed baryons, Phys. Rev. D 108 (2023) 053004 [arXiv:2305.14864] [INSPIRE].
- [18] C.-Q. Geng et al., Complete determination of SU(3)_F amplitudes and strong phase in Λ[±]_c → Ξ⁰K⁺, Phys. Rev. D 109 (2024) L071302 [arXiv:2310.05491] [INSPIRE].
- [19] C.-W. Liu, Nonleptonic two-body weak decays of charmed baryons, Phys. Rev. D 109 (2024) 033004 [arXiv:2308.07754] [INSPIRE].
- [20] H. Zhong, F. Xu and H.-Y. Cheng, Analysis of hadronic weak decays of charmed baryons in the topological diagrammatic approach, Phys. Rev. D 109 (2024) 114027 [arXiv:2404.01350] [INSPIRE].
- [21] H.J. Zhao, Y.-L. Wang, Y.K. Hsiao and Y. Yu, A diagrammatic analysis of two-body charmed baryon decays with flavor symmetry, JHEP 02 (2020) 165 [arXiv:1811.07265] [INSPIRE].
- [22] Y.K. Hsiao, Y.L. Wang and H.J. Zhao, Equivalent SU(3)_f approaches for two-body anti-triplet charmed baryon decays, JHEP 09 (2022) 035 [arXiv:2111.04124] [INSPIRE].

$\Xi_s^+ \to \Sigma^+ K_s^0, \overline{\Xi^0 \pi^+}, \overline{\Xi^0 K^+}$ at Belle and Belle II

- Precise \mathcal{B} measurement for $\Xi_c^+ \to \Sigma^+ K_S^0$ and $\Xi_c^+ \to \Xi^0 \pi^+$ (both CF), and first observation of $\Xi_c^+ \to \Xi_c^0 K^+$ (SCS).
- Branching fractions are obtained from ratios normalized to the reference mode $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$:


$$\mathcal{B}(\Xi_c^+ \to \Sigma^+ K_S^0) = (0.194 \pm 0.021 \pm 0.009 \pm 0.087)\%$$

 $\mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+) = (0.728 \pm 0.014 \pm 0.027 \pm 0.326)\%$

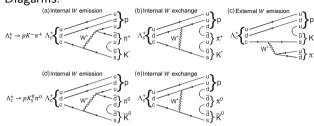

$$\mathcal{B}(\Xi_c^+ \to \Xi^0 K^+) = (0.728 \pm 0.014 \pm 0.027 \pm 0.320)\%$$

 $\mathcal{B}(\Xi_c^+ \to \Xi^0 K^+) = (0.049 \pm 0.007 \pm 0.003 \pm 0.022)\%$

Uncertainties are statistical, systematic, and reference mode.

Mode	Belle (yield)	Belle II (yield)
$\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$	$(487 \pm 4) \times 10^{2}$	$(196 \pm 2) \times 10^{2}$
$\Xi_c^+ \rightarrow \Sigma^+ K_S^0$	288 ± 41	(182 ± 31)
$\Xi_c^+ \rightarrow \Xi^0 \pi^+$	(2782 ± 74)	(1469 ± 40)
$\Xi_c^+ \rightarrow \Xi^0 K^+$	(138 ± 31)	(100 ± 20)

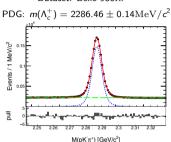
 Results are broadly consistent with several model predictions: none are excluded.

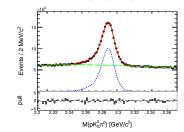


Fits: Belle (left) and Belle II (right)._{14/35}

$\Lambda_c^+ o p K_S^0 \pi^0$ at Belle

• Diagarms:




- Examining Isospin properties of the weak interaction.
 - Improves uncertainty of previous CLEO result.

•
$$\frac{\mathcal{B}(\Lambda_c^+ \to p K_0^5 \pi^0)}{\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)} = 0.339 \pm 0.002 \pm 0.009$$

• With PDG value of $\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+) = (6.24 \pm 0.28)\%$, $\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^0) = (2.12 \pm 0.01 \pm 0.05 \pm 0.10)\%$ unceratinties: stat., syst., and from $\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)$.

Dataset: Belle 980fb⁻¹

Outline

- Charm Physics at Belle/Belle II
- 2 Branching fractions and searches for rare decays
 - $D_{s0}^*(2317)^+ \to D_s^{*+} \gamma$
 - $\bullet \ \Xi_c^0 \to \Xi^0 h(h=\pi^0,\eta,\eta')$
 - $\Xi_c^0 \to \Lambda h(h=\pi^0,\eta,\eta')$
 - $\bullet \ \Xi_c^+ \to pK_S^0, \Lambda \pi^+, \Sigma^0 \pi^+$
 - $\Xi_c^+ \to \Sigma^+ K_S^0, \Xi^0 \pi^+, \Xi^0 K^+$
 - $\Lambda_c^+ \to p K_S^0 \pi^0$
- Charm CP violation search
 - $D \rightarrow \pi\pi$
 - $D^0 \to \pi^+ \pi^- \pi^0$
 - ullet $D^0 o K^0_S K^0_S$
 - $\Xi_c^+ \to \Sigma^+ h^+ h^-, \Lambda_c^+ \to ph^+ h^- (h = \pi, K)$
- 4 Korean group in Belle II charm physics
- Summary

Charm

Charm Physics at Belle/Belle II

 Since charm transitions probe the up-type sector, they allow us to search for CP-violating interactions that do not appear in kaon or B-meson decays.

Charm CPV

- $A_{CP}(X_c \to f) \equiv \frac{\Gamma(X_c \to f) \Gamma(\bar{X}_c \to \bar{f})}{\Gamma(X_c \to f) + \Gamma(\bar{X}_c \to \bar{f})}$
- Raw asymmetry including production and detection asymmetries is extracted from a fit to invariant mass. $A_N \equiv \frac{N(X_c \to f) - N(\bar{X}_c \to \bar{f})}{N(X_c \to f) + N(\bar{X}_c \to \bar{f})} = A_{CP}(X_c \to f) + A_{prod}(X_c) + A_{det}(f) .$

 The first and only observation of CPV by LHCb [PRL122(2019)211803, PRL131(2023)091802] $\Delta A_{CP}(D^0 \to K^+ K^-, \pi^+ \pi^-) = (-15.4 \pm 2.9) \times 10^{-4} [5.3\sigma]$ Followed by a 3.8 σ evidence of direct CPV in $D^0 \to \pi^+\pi^-$

Baryon

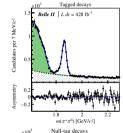
- CPV searches in baryons complement meson studies.
- Observation of CPV in b-baryon decays by LHCb [Nature643(2025)1223] $A_{CP}(\Lambda_b \to pK^-\pi^+\pi^-) = (2.45 \pm 0.46 \pm 0.10)\%$
- U-spin sum rules, analogous to those linking $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ [PRD99(2019)033005]: $A_{CP}(\Lambda_c^+ \to pK^-K^+) + A_{CP}(\Xi_c^+ \to \Sigma^+\pi^-\pi^+) = 0$

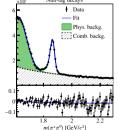
CP violation in $D \rightarrow \pi\pi$

- ullet $D^0
 ightarrow \pi^+\pi^-$
 - This is the only decay channel in charm mesons with more than 3σ evidence for CP violation.
 - In the Standard Model, CP violation arises from the interference between a tree-level amplitude and a suppressed QCD loop amplitude, involving a $\Delta I=1/2$ change in isospin [PRD 85 (2012) 114036].
- $\bullet \ D^+ \to \pi^+ \pi^0$
 - This decay has I=2 and can only occur from an I=1/2 initial state through a $\Delta I=3/2$ transition.
 - Any observation of this decay would indicate physics beyond the Standard Model.
- ullet $D^0
 ightarrow \pi^0 \pi^0$
 - Can have I = 0 or I = 2 and hence can have nonzero direct CP asymmetries in SM.
 - Isospin sum rule:

$$R = \frac{A_{CP}^{\text{dir}}(D^0 \to \pi^+ \pi^-)}{1 + \frac{\tau_{D^0}}{B_{+-}} \left(\frac{B_{00}}{\tau_{D^0}} - \frac{2}{3} \frac{B_{+0}}{\tau_{D^+}}\right)} + \frac{A_{CP}^{\text{dir}}(D^0 \to \pi^0 \pi^0)}{1 + \frac{\tau_{D^0}}{B_{00}} \left(\frac{B_{+-}}{\tau_{D^0}} - \frac{2}{3} \frac{B_{+0}}{\tau_{D^+}}\right)} + \frac{A_{CP}^{\text{dir}}(D^+ \to \pi^+ \pi^0)}{1 - \frac{3}{2} \frac{\tau_{D^+}}{B_{+0}} \left(\frac{B_{00}}{\tau_{D^0}} + \frac{B_{+-}}{\tau_{D^0}}\right)},$$

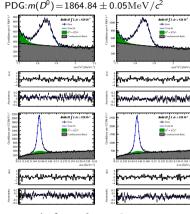
where τ_{D^0} and τ_{D^+} are the lifetimes of D^0 and D^+ mesons, and \mathcal{B}_{+-} , \mathcal{B}_{00} and \mathcal{B}_{+0} are the D meson branching fractions to $\pi^+\pi^-$, $\pi^0\pi^0$ and $\pi^+\pi^0$ decays.


$D^+ o \pi^+ \pi^0$ at Belle II


 The raw asymmetry is extracted from a fit to the D⁺ invariant-mass distribution:

$$A^{\pi^{+}\pi^{0}} = \frac{N(D^{+} \to \pi^{+}\pi^{0}) - N(D^{-} \to \pi^{-}\pi^{0})}{N(D^{+} \to \pi^{+}\pi^{0}) + N(D^{-} \to \pi^{-}\pi^{0})} = A_{CP}(D^{+} \to \pi^{+}\pi^{0}) + A_{P}^{D} + A_{\varepsilon}^{\pi^{+}}.$$

- Events are categorized into D^* -tagged ($D^{*+} \to D^+ \pi^0$) and untagged samples to improve measurement precision.
- Asymmetries from production and detection are corrected using the control channel $D^+ o K_S \pi^+.$
- $A_{CP} = (-1.8 \pm 0.9 \pm 0.1)\%$ consistent with no CP violation.
- The statistical precision is roughly 30% better than the previous Belle measurement, thanks to the higher signal purity at Belle II.
- The precision slightly surpasses that of the corresponding LHCb measurement (9 fb⁻¹ dataset).

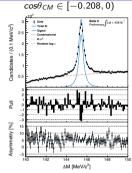

$D^0 o \pi^0 \pi^0$ at Belle II

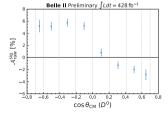
PRD 112 (2025) 012006

- Use $D^{*+} \rightarrow D^0 \pi^+$ to determine the D^0 flavor.
 - ullet And a dedicated BDT to suppress the large 4γ background.
- The raw asymmetry is determined from a fit to the D⁺ invariant-mass distribution:

$$A^{\pi^{+}\pi^{0}} = \frac{MD^{*+} \to (D^{0} \to \pi^{0}\pi^{0})\pi^{+}] - M[D^{*-} \to (\bar{D}^{0} \to \pi^{0}\pi^{0})\pi^{-}]}{M[D^{*+} \to (D^{0} \to \pi^{0}\pi^{0})\pi^{+}] + M[D^{*-} \to (\bar{D}^{0} \to \pi^{0}\pi^{0})\pi^{-}]} = A_{CP}(D^{0} \to \pi^{0}\pi^{0}) + A_{P}^{D^{*}} + A_{P}^{\pi^{+}}$$

- Raw asymmetry extracted from a fit to the D^0 mass and ΔM , the $D^{*+}-D^0$ mass difference.
- Production asymmetry (odd in $cos\theta_{CM}$) removed by averaging A_{raw} of forward ($cos\theta_{CM} > 0$) and backward ($cos\theta_{CM} < 0$) decays
- Detection asymmetries are corrected using the $D^0 o K^-\pi^+$ control mode.
- $A_{CP} = (0.30 \pm 0.72 \pm 0.20)\%$ which is only 15% less precise than BELLE but with half of the statistics. [PRL112(2014)211601]
- Isospin sum rule $R = (3.1 \pm 2.3) \times 10^{-3}$, precision improved by 25%, including the new result of $A_{CP}(D^+ \to \pi^+ \pi^0)$.


Left: $cos\theta_{CM} < 0$, right: $cos\theta_{CM} > 0$.


$D^0 o \pi^+\pi^-\pi^0$ at Belle II

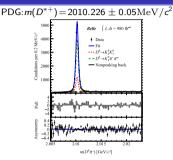
- SCS three-body decay, interference of several amplitudes.
- Use $D^{*+} \rightarrow D^0 \pi^+$ to determine the D^0 flavor.
- The raw asymmetry is determined from a fit to the *D*⁺ invariant-mass distribution:

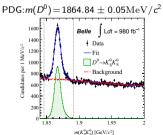
$$A^{\pi^{+}\pi^{-}\pi^{0}} = \frac{N[D^{*+} \to (D^{0} \to \pi^{+}\pi^{-}\pi^{0})\pi^{+}] - N[D^{*-} \to (\bar{D}^{0} \to \pi^{+}\pi^{-}\pi^{0})\pi^{-}]}{N[D^{*+} \to (D^{0} \to \pi^{+}\pi^{-}\pi^{0})\pi^{+}] + N[D^{*-} \to (\bar{D}^{0} \to \pi^{+}\pi^{-}\pi^{0})\pi^{-}]} = A_{CP}(D^{0} \to \pi^{+}\pi^{-}\pi^{0}) + A_{D}^{0*} + A_{\pi}^{\pi^{+}}$$

- Raw asymmetry extracted from a fit to the D^0 mass and ΔM , the $D^{*+}-D^0$ mass difference.
- A simultaneous fit is performed in 8 bins of $\cos \theta_{CM}$, and A_{raw} is symmetrically averaged around 0 to cancel the production asymmetry.
- Detection asymmetries are corrected using the control channel $D^0 \to K^-\pi^+$
- $A_{CP} = (0.29 \pm 0.27 \pm 0.13)\%$
 - Achieves 34% better precision than BABAR with only 10% more integrated luminosity.
 - Currently the most precise measurement of this quantity.

$D^0 o K_S^0 K_S^0$ at Belle II

PRD 111 (2025) 012015, PRD 111 (2025) 012017


- CP violation can be enhanced up to $\mathcal{O}(1\%)$ due to large interference from the W-exchange tree-level process.
- D^{*+} -tagged Belle + Belle II analysis:


$$A_{CP} = (-1.4 \pm 1.3 \pm 0.1)\%$$

• Opposite-side tagged Belle + Belle II analysis:

$$A_{CP} = (1.3 \pm 2.0 \pm 0.2)\%$$

- Uses a novel MVA-based flavour-tagging technique exploiting the rest-of-event information, with the output included in the fit together with the D^0 mass.
- Combined analysis (D^{*+} -tagged + Opposite-side tagged): $A_{CP} = (-0.6 \pm 1.1 \pm 0.1)\%$
 - The opposite-side tagged sample effectively adds \sim 40% more statistics to the traditional D^{*+} -tagged measurement.
 - Achieves precision (statistical + systematic) comparable to the latest LHCb Run 3 result (6/fb).

$\Xi_c^+ \to \Sigma^+ h^+ h^-, \Lambda_c^+ \to ph^+ h^- (h=\pi,K)$ at Belle II

• The production asymmetry($A_{prod}(X_c)$, odd in $\cos \theta_{CM}$) is eliminated by averaging raw asymmetry of forward and backward decays:

Charm CPV

$$A'_{N} = \frac{A_{N}(\cos\theta_{CM} > 0) + A_{N}(\cos\theta_{CM} < 0)}{2}$$

$$A_{CP}(\Xi_{c} \to \Sigma hh) = A'_{N}(\Xi_{c} \to \Sigma hh) - A'_{N}(\Lambda_{c} \to \Sigma hh)$$

$$A_{CP}(\Lambda_{c} \to phh) = A'_{N}(\Lambda_{c} \to phh) - A'_{N}(\Lambda_{c} \to p\pi^{+}K^{-}) - A'_{N}(D^{0} \to \pi^{+}K^{-}\pi^{+}\pi^{-})$$

 First measurement of A_{CP} in SCS three-body charm baryon decays.

$$A_{CP}(\Xi_c^+ \to \Sigma^+ K^- K^+) = (3.7 \pm 6.6 \pm 0.6)\%$$

$$A_{CP}(\Xi_c^+ \to \Sigma^+ \pi^- \pi^+) = (9.5 \pm 6.8 \pm 0.5)\%$$

$$A_{CP}(\Lambda_c^+ \to p K^- K^+) = (3.9 \pm 1.7 \pm 0.7)\%$$

$$A_{CP}(\Lambda_c^+ \to p \pi^- \pi^+) = (0.3 \pm 1.0 \pm 0.2)\%$$

- Within statistical uncertainties, consistent with CP symmetries.
- U-spin symmetry test with $\sim 7\%$ precision. $A_{CP}(\Lambda_c \to pKK) + A_{CP}(\Xi_c \to \Sigma\pi\pi) = (13.4 \pm 7.0 \pm 0.9)\%$ $A_{CP}(\Lambda_c \to p\pi\pi) + A_{CP}(\Xi_c \to \Sigma KK) = (4.0 \pm 6.6 \pm 0.7)\%$

 $\begin{array}{lll} \text{PDG: } m(\Lambda_c^+) = 2286.46 \pm 0.14 \text{MeV}/c^2 \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

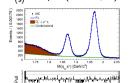
PDG: $m(\Xi_c^+) = 2467.71 \pm 0.23 \text{MeV}/c^2$,

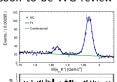
0

Outline

- - $D_{-2}^*(2317)^+ \to D_{-2}^{*+} \gamma$
 - $\Xi_{c}^{0} \to \Xi_{c}^{0} h(h = \pi_{c}^{0}, n, n')$
 - $\bullet \equiv 0 \rightarrow \Lambda h(h = \pi^0, \eta, \eta')$
 - $\bullet \equiv^+_{\circ} \rightarrow pK_{\circ}^0, \Lambda \pi^+, \Sigma^0 \pi^+$
 - $\Xi_c^+ \to \Sigma_c^+ K_S^0, \Xi_c^0 \pi^+, \Xi_c^0 K^+$
 - $\bullet \Lambda^+_{\bullet} \to p K_c^0 \pi^0$
- - $O D \rightarrow \pi\pi$
 - $D^0 \rightarrow \pi^+\pi^-\pi^0$
 - $D^0 \rightarrow K_c^0 K_c^0$
 - \bullet $\Xi_{+}^{+} \rightarrow \Sigma_{-}^{+} h^{+} h^{-} . \Lambda_{+}^{+} \rightarrow ph^{+} h^{-} (h = \pi, K)$
- Korean group in Belle II charm physics

Korean group in Belle II charm physics


Recent studies


- Yonsei university(Prof. Youngjoon Kwon)
 - Search for $D^0 o$ invisible: soon to be WG review

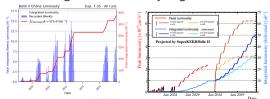
$$e^+e^-
ightarrow car c
ightarrow D_{ ext{tag}}^{(*)} X_{ ext{frag}} D^{*+}, D^{*+}
ightarrow D^0 \pi^+.$$

• A_{CP} and branching fraction of $D_{(s)}^+ \to \eta h^+(h=\pi,K)$: soon to be WG review

- Korea university(Prof. Jung-Keun Ahn)
 - $\Lambda_c^+ \to p K_S^0 \pi^0$: published, slide 15
- Korea university(Prof. Eunil Won)
 - A_{CP} and \mathcal{B} measurements in $D_{(s)}^+ \to h^+ \omega(h=\pi,K)$: ongoing
- Soongsil university(Prof. Doris Yangsoo Kim)
 - ${\cal B}$ measurements in $D^0 o K^0_S K^0_S \pi^0, D^0 o K^0_S K^0_S \eta$: ongoing

Outline

- 1 Charm Physics at Belle/Belle II
- 2 Branching fractions and searches for rare decays
 - $D_{s0}^*(2317)^+ \to D_s^{*+} \gamma$
 - $\Xi_c^0 \to \Xi^0 h(h = \pi^0, \eta, \eta')$
 - $\Xi_c^0 \to \Lambda h(h=\pi^0,\eta,\eta')$
 - $\Xi_c^+ \to pK_S^0, \Lambda \pi^+, \Sigma^0 \pi^+$
 - $\Xi_c^+ \to \Sigma^+ K_S^0, \Xi^0 \pi^+, \Xi^0 K^+$
 - $\Lambda_c^+ \to p K_S^0 \pi^0$
- Charm CP violation search
 - $D \rightarrow \pi\pi$
 - $D^0 \to \pi^+\pi^-\pi^0$
 - $D^0 \to K_S^0 K_S^0$
 - $\Xi_c^+ \to \Sigma^+ h^+ h^-, \Lambda_c^+ \to ph^+ h^- (h = \pi, K)$
- 4 Korean group in Belle II charm physics
- Summary


Summary

- Belle($\sim 1 {\rm ab}^{-1}$) and Belle II($\sim 0.5 {\rm ab}^{-1}$) provide a e^+e^- environment with high sensitivity to SM tests and BSM searches in charm meson and baryon decays.
 - Meson:
 - First observation of $D_{s0}^*(2317)^+ \rightarrow D_s^{*+}\gamma$.
 - Search for CPV in D mesons: $D^+ \to \pi^+\pi^0$, $D^0 \to \pi^0\pi^0$, $D^0 \to \pi^+\pi^-\pi^0$, $D^0 \to K_s^0K_s^0$

First observations of ≡_c decays:

$$\Xi_c^+ \to pK_S^0$$
, $\Lambda \pi^+$, $\Sigma^0 \pi^+$, ΞK^+
 $\Xi_c^0 \to \Xi^0 \pi^0$, $\Xi^0 n$, $\Xi^0 n'$, Λn , $\Lambda n'$

- Improved measurements of branching fractions for Ξ_c and Λ_c .
- First measurement of A_{CP} in singly Cabibbo-suppressed three-body charm-baryon decays: $\Xi_c^+ \to \Sigma^+ h^+ h^-$, $\Lambda_c^+ \to p \, h^+ h^-$ ($h = \pi, K$)
- Data taking restarts two days ago; more statistics are coming.

Thank you for your attention!

jaeyoung_kim@yonsei.ac.kr

$D_{c0}^*(2317)^+ \to D_{c}^{*+} \gamma$

- (2005)
- [16] Y. A. Simonov and J. A. Tion, Phys. Rev. D 70, 114013
- [17] I.W. Lee, T. Lee, D. P. Min, and B. V. Park, Eur. Phys. J. C 49, 737 (2007).
- [18] Z. Y. Zhou and Z. Xiao, Phys. Rev. D 84, 034023 (2011). [19] A. M. Badalian, Y. A. Simonov, and M. A. Trusov, Phys.
- Rev. D 77, 074017 (2008). [20] W. A. Bardeen, E. J. Eichten, and C. T. Hill, Phys. Rev.
- D 68, 054024 (2003)
- [21] M. A. Nowak, M. Rho, and I. Zahed, Acta Phys. Polon. B 35, 2377 (2004).
- [22] E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 582. 39 (2004)
- [23] H. V. Cheng and W. S. Hou, Phys. Lett. B 566, 193. (2003)
- [24] V. Dmitrasinovic Phys. Rev. D 70, 096011 (2004).
- [25] V. Dmitrasinovic, Phys. Rev. D 86, 016006 (2012)
- [26] A. Havashigaki and K. Terasaki, Prog. Theor. Phys. 114. 1191 (2006).
- [27] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer. Phys. Rev. D 71, 014028 (2005).
- [28] M. E. Bracco, A. Lozea, R. D. Matheus, F. S. Navarra, and M. Nielsen, Phys. Lett. B 624, 217 (2005).
- [29] T. E. Browder, S. Pakvasa, and A. A. Petrov, Phys. Lett. B 578 365 (2004)
- [30] J. Lu, X. L. Chen, W. Z. Deng, and S. L. Zhu, Phys. Rev. D 73 054012 (2006).
- [31] P. Bicudo, Phys. Rev. D 74, 036008 (2006).
- [32] A. Martinez Torres, L. R. Dai, C. Koren, D. Jido, and
- E. Oset, Phys. Rev. D 85, 014027 (2012) [33] D. Mohler, C. B. Lang, L. Leskovec, S. Prelovsek, and
- R. M. Woloshyn, Phys. Rev. Lett. 111, 222001 (2013). [34] M. N. Tang, Y. H. Lin, F. K. Guo, C. Hanhart, and
- U. G. Meißner, Commun. Theor. Phys. 75, 055203 [35] B. Aubert et al. (BaBar Collaboration). Phys. Rev. Lett.
- 90. 242001 (2003)
- [36] D. Besson et al. (CLEO Collaboration), Phys. Rev. D 68, 032002 (2003) [erratum: Phys. Rev. D 75, 119908 (2007)
- [37] Y. Mikami et al. (Belle Collaboration), Phys. Rev. Lett. 92, 012002 (2004)
- [38] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 07 051102 (2016)

- [42] H. L. Fu, H. W. Grießhammer, F. K. Guo, C. Hanhart, and U. G. Meißner, Eur. Phys. J. A 58, 70 (2022).
- [43] M. F. M. Lutz and M. Soveur, Nucl. Phys. A 813, 14 (2008)
- [44] S. Godfrey, Phys. Lett. B 568, 254 (2003).
- [45] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Meth. A 479, 117 (2002)
- [46] J. Brodzicka et al., PTEP 2012, 04D001 (2012).
- [47] S. Kurokawa and E. Kikutani, Nucl. Instrum. Meth. A 499. 1 (2003).
- [48] T. Abe et al., PTEP 2013, 03A001 (2013).
- [49] T. Abe et al. (Belle II Collaboration), arXiv:1011.0352. [50] K. Akai et al., Nucl. Instrum. Meth. A 907, 188 (2018).
- [51] T. Kuhr C. Pulvermacher M Ritter T. Hauth and N. Braun (Belle II Software Framework Group). Comput. Softw. Big Sci 3, 1 (2019).
- [52] Belle II collaboration Belle Analysis Software Framework (basf2). https://doi.org/10.5281/genodo.5574115
- [53] M. Gelb et al., Comput. Softw. Big Sci. 2, 9 (2018)
- [54] S. Jadach, B. F. L. Ward and Z. Was, Comput. Phys. Commun. 130, 260 (2000).
- [55] T. Siöstrand et al., Comput. Phys. Commun. 135, 238 (2001).
- [56] T. Siöstrand et al., Comput. Phys. Commun. 191, 159 (2015).
- [57] S. Navas et al. (Particle Data Group), Phys. Rev. D 110. 030001 (2024).
- [58] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 104 012016 (2021)
- [59] R. Brun et al., GEANT 3: user's guide Geant 3.10, Geant CERN Report No. DD/EE/84-1, 1984.
- [60] S. Agostinelli et al. (GEANT4 Collaboration). Nucl. Instrum. Meth. A 506, 250 (2003).
- [61] E. Nakano, Nucl. Instrum. Meth. A 494, 402 (2002). [62] I. Adachi et al. (Belle II Collaboration). arXiv:2506.04355.
- [63] G. Punzi. eConf C030908. MODT002 (2003).
- [64] X. Zhou, S. Du, G. Li and C. Shen, Comput. Phys. Commun. 258, 107540 (2021).
- [65] M. Oreglia, SLAC report SLAC-0236 (1980).
- [66] S. S. Wilks, Ann. Math. Stat. 9, 60 (1938).
- [67] H. W. Ke, X. O. Li, and Y. L. Shi, Phys. Rev. D 87. 054022 (2013).

Table I: The summary of the systematic uncertainties of the measurement of the branching fraction ratio $\mathcal{B}(D_{-0}^*(2317)^+ \to$ $D_*^{*+}\gamma)/\mathcal{B}(D_{*0}^*(2317)^+ \to D_*^+\pi^0)$ (in %).

Source	$D_{s}^{+}\pi^{0}$	$D_s^{*+}\gamma$
Fit region and background pdf	0.8	1.3
Fixed pdf parameters	0.7	2.5
Cross-feed or broken signal	0.6	0.7
x_p reweighting	0	.5
MC sample size	0	.5
Sum	3	.2

$\Xi_c^+ o pK_S^0, \Lambda\pi^+, \Sigma^0\pi^+$

Sources		$\rightarrow pK_S^0$ $\Xi^-\pi^+\pi^+)$		$\rightarrow \Lambda \pi^+)$ $\Xi^-\pi^+\pi^+)$		$\Sigma^0\pi^+$ $\Xi^-\pi^+\pi^+$
Sources	Belle	Belle II	Belle	Belle II	Belle	Belle II
Tracking	0.7	0.7	0.7	0.7	0.7	0.7
Particle identification	0.1	0.2	0.1	0.1	0.1	0.1
K_S^0 reconstruction	0.8	2.6				
Λ reconstruction	0.5	0.3	0.3	0.2	0.3	0.2
Photon reconstruction					2.0	1.1
Mass resolution	0.2	0.2	0.4	0.5	0.7	0.8
Dalitz efficiency correction	1.3	1.5	1.3	1.5	1.3	1.5
Branching fraction	0.8	0.8	0.0	0.0	0.0	0.0
Fit Uncertainty	2.5	2.5	5.9	5.9	5.1	5.1
Sum in quadrature	3.2	4.1	6.1	6.2	5.7	5.5

Table 3. Relative systematic uncertainties (%) in the measurements of branching fraction ratios. The uncertainties due to intermediate branching fractions and fit uncertainty are common to Belle and Belle Π ; the other uncertainties are independent.

$\Xi_c^+ o \Sigma^+ \mathit{K}_{\mathit{S}}^0, \Xi^0 \pi^+, \Xi^0 \mathit{K}^+$

Source	$\frac{\mathcal{B}(\Xi_c^+ \to \Sigma^+ K_S^0)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)}$		$\frac{\mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)}$		$\frac{\mathcal{B}(\Xi_c^+ \to \Xi^0 K^+)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)}$	
bource	Belle	Belle II	Belle	Belle II	Belle	Belle II
Tracking	0.7	0.7	1.4	1.4	1.4	1.4
PID	0.1	0.2	0.1	0.1	0.1	0.2
π^0 reconstruction	2.2	4.2	2.4	4.3	2.3	4.3
K_S^0 reconstruction	0.8	2.3				
Λ reconstruction	0.5	0.7				
Mass resolution	1.4	1.6	0.4	0.6	1.1	1.4
MC sample size	1.0	1.0	1.0	1.0	1.0	1.0
Dalitz efficiency-correction	1.5	1.7	1.5	1.7	1.5	1.7
Fit uncertainty	3.7	4.8	0.9	1.0	5.3	4.3
Background shape	1.5	1.5	2.4	2.4	2.2	2.2
Intermediate states \mathcal{B}	1.0	1.0	0.1	0.1	0.1	0.1
Total	5.4	7.6	4.3	5.7	6.7	7.1

Table 3. Relative systematic uncertainties (%) on the results of branching fraction ratios. The uncertainties in the last two rows, due to intermediate branching fractions and background shape, are common to Belle and Belle II; the other uncertainties are independent. Since the $A \to p\pi^-$ decay is reconstructed in $\Xi_p^+ \to \Xi^0 A^+$ and $\Xi_p^+ \to \Xi^0 A^+$, the $B(A \to p\pi^-)$ uncertainty and the uncertainty due to the $A \to p\pi^-$ reconstruction efficiency cancel in the ratios of $\frac{B(\Xi_p^+ \to \Xi^0 A^+)}{B(\Xi_p^+ \to \Xi^0 A^+)}$ and $\frac{B(\Xi_p^+ \to \Xi^0 A^+)}{B(\Xi_p^+$

- [4] J. Zou, F. Xu, G. Meng and H.-Y. Cheng, Two-body hadronic weak decays of antitriplet charmed baryons, Phys. Rev. D 101 (2020) 014011 [arXiv:1910.13626] [INSPIRE].
- [5] C.Q. Geng, C.-W. Liu and T.-H. Tsai, Asymmetries of anti-triplet charmed baryon decays, Phys. Lett. B 794 (2019) 19 [arXiv:1902.06189] [INSPIRE].
- [6] H.J. Zhao, Y.-L. Wang, Y.K. Hsiao and Y. Yu, A diagrammatic analysis of two-body charmed baryon decays with flavor symmetry, JHEP 02 (2020) 165 [arXiv:1811.07265] [INSPIRE].
- [7] Y.K. Hsiao, Y.L. Wang and H.J. Zhao, Equivalent SU(3)_f approaches for two-body anti-triplet charmed baryon decays, JHEP 09 (2022) 035 [arXiv:2111.04124] [INSPIRE].
- [8] F. Huang, Z.-P. Xing and X.-G. He, A global analysis of charmless two body hadronic decays for anti-triplet charmed baryons, JHEP 03 (2022) 143 [Erratum ibid. 09 (2022) 087]
 [arXiv:2112.10586] [INSPIRE].
- [arXiv:2112.10586] [InSPIRE].
 Z.-P. Xing, X.-G. He, F. Huang and C. Yang, Global analysis of measured and unmeasured hadronic hondronic bloods of the classical statistical charmed horsons, Phys. Rev. D 108 (2023) 053004.
- [10] C.-W. Liu, Nonleptonic two-body weak decays of charmed baryons, Phys. Rev. D 109 (2024) 033004 [arXiv:2308.07754] [INSPIRE].

[arXiv:2305.14854] [INSPIRE].

- [11] H. Zhong, F. Xu, Q. Wen and Y. Gu, Weak decays of antitriplet charmed baryons from the perspective of flavor symmetry, JHEP 02 (2023) 235 [arXiv:2210.12728] [INSPIRE].
- [12] CLEO collaboration, Observation of new decay modes of the charmed strange baryon \(\mathbb{\epsilon}_c^+\), Phys. Lett. B 373 (1996) 261 [INSPIRE].

$$\Xi_c^0 \to \Xi^0 h(h=\pi^0,\eta,\eta')$$

Source		$\rightarrow \Xi^0 \pi^0$ $\rightarrow \Xi^- \pi^+$		$\Xi_c^0 \rightarrow \Xi^0 \eta$ $\to \Xi^- \pi^+$		$0 \to \Xi^0 \eta'$ $\to \Xi^- \pi^+$
Source	Belle	Belle II	Belle	Belle II	Belle	Belle II
Tracking	0.7	0.8	0.7	0.7	1.0	1.5
π^{\pm} PID	0.4	0.2	0.4	0.2	1.4	0.2
π^0 reconstruction	4.4	8.8	2.3	4.3	2.3	4.2
Photon reconstruction	-	-	4.0	2.0	4.0	1.9
Simulation sample size	0.8	0.7	0.9	0.9	1.2	1.0
α uncertainty	1.1	1.2	3.0	3.4	1.0	3.5
Ξ^0 signal mass window	0.5	2.0	0.5	2.0	0.5	2.0
Normalization mode sample size	1.0	1.3	1.0	1.3	1.0	1.3
Broken-signal ratio $(n_{\text{broken}}/n_{\text{sig}})$	2.1	1.5	3.5	3.6	3.6	5.7
Broken-signal PDF	0.2	0.1	7.3	7.5	2.0	1.1
Mass resolution	-	-	7.2	7.0	2.4	1.4
Intermediate states \mathcal{B}	-	-	0.5	0.5	1.3	1.3
Background shape	4.9	4.9	9.2	9.2	6.8	6.8
Total	7.2	10.6	15.3	15.6	9.9	11.2

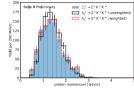
Table 5. Fractional systematic uncertainties (%) on the relative branching-fraction results. The uncertainties in the last two rows, due to intermediate branching fractions and background shape, are common to Belle and Belle II; the other uncertainties are independent. Since the $\Lambda \to p\pi^-$ decay is reconstructed in each decay mode, the $\mathcal{B}(\Lambda \to p\pi^-)$ uncertainty and the uncertainty due to the $\Lambda \to p\pi^-$ reconstruction efficiency cancel in the ratio to the reference mode $\Xi_v^0 \to \Xi^-\pi^+$.

$\rightarrow \Lambda h(h=\pi^0, \overline{\eta, \eta'})$

Table II. Fractional systematic uncertainties (%) on the branching ratios from different sources. Systematic uncertainties associated with the fitting procedures are treated as multiplicative for $\Xi^0 \to \Lambda n/\Lambda n'$ and as additive for the unobserved mode $\Xi_c^0 \to \Lambda \pi^0$. The total uncertainties are calculated by first summing the uncertainties from different sources in quadrature for Belle and Belle II separately, and then deriving the results from the luminosity-weighted average of these sums

Source		$\frac{\mathcal{B}(\Xi_c^0 \to \Lambda \eta)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$		$\frac{\mathcal{B}(\Xi_c^0 \rightarrow \Lambda \eta')}{\mathcal{B}(\Xi_c^0 \rightarrow \Xi^- \pi^+)}$		$\frac{\mathcal{B}(\Xi_c^0 \to \Lambda \pi^0)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	
bource	Belle	Belle II	Belle	Belle II	Belle	Belle II	
Tracking efficiency	0.77%	1.07%	1.51%	2.13%	0.64%	0.80%	
π^+ PID	1.49%	0.21%	2.24%	0.24%	1.39%	0.20%	
π^0 reconstruction	0.24%	1.67%	0.18%	0.65%	1.45%	4.13%	
Photon reconstruction	3.35%	0.84%	2.54%	0.98%	_	_	
π^0 veto	2.23%	1.02%	0.71%	0.34%	_	_	
A momentum	0.56%	0.34%	0.55%	0.68%	0.20%	0.82%	
MC sample size	1.08%	0.82%	1.15%	1.08%	0.67%	0.45%	
Intermediate states B	0.47%	0.47%	0.85%	0.85%	0.06%	0.06%	
Fit procedure	5.54%	5.54%	4.83%	4.84%	0.17%	0.33%	
Total 5.35%		35%	4.77%			2.04%	
Normalization mode B	ation mode B			89%			

- [15] H. J. Zhao, Y. L. Wang, Y. K. Hsiao, and Y. Yu, J. High Energy Phys. 02, 165 (2020).
- [16] C. Q. Geng, Y. K. Hsiao, C. W. Liu, and T. H. Tsai, Phys. Rev. D 97, 073006 (2018). [17] J. Zou, F. Xu, G. Meng, and H. Y. Cheng, Phys. Rev. D
- **101**, 014011 (2020). [18] C. Q. Geng, C. W. Liu, and T. H. Tsai, Phys. Lett. B
- **794**, 19 (2019). [19] Y. K. Hsiao, Y. L. Wang, and H. J. Zhao, J. High Energy
- Phys. 09, 035 (2022). [20] H. Zhong, F. Xu, Q. Wen, and Y. Gu, J. High Energy
- Phys. 02, 235 (2023). [21] C. Q. Geng, X. G. He, X. N. Jin, C. W. Liu, and C. Yang,
- Phys. Rev. D 109, L071302 (2024). [22] H. Zhong, F. Xu, and H. Y. Cheng, arXiv:2401.15926.
- [23] Z. P. Xing, Y. J. Shi, J. Sun, and Y. Xing, Eur. Phys. J. C 84, 1014 (2024).



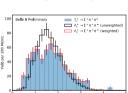
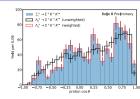
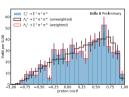
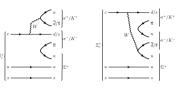

$\Lambda_c^+ o p K_S^0\pi^0$

TABLE I. Sources of systematic uncertainties for the relative branching fraction, $\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^0)/\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)$.


Sources	Value (%)
K_S^0 reconstruction	1.57
π^0 reconstruction	1.54
Fit function	0.60
MC statistics	0.58
Dalitz plot binning	0.68
PID of K^- and π^+	0.34
Tracking of K^- and π^+	0.70
Total	2.57


$\Xi_c^+ o \Sigma^+ h^+ h^-, \Lambda_c^+ o ph^+ h^- (h = \pi, K)$



proton momentum [GeV/c]

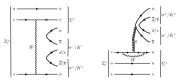


Table II: Uncertainties on ACP (in %)

Source	Ξ_c^+		Λ_c^+	
	$\Sigma^+K^+K^-$	$\Sigma^{+}\pi^{+}\pi^{-}$	pK^+K^-	$p\pi^+\pi^-$
Fit model	0.4	0.4	0.4	0.1
Weighting	0.1	0.2	0.3	0.1
Residual A_p	0.2	0.1	0.1	0.1
$A_{\rm d}(h^{+}h^{-})$	0.4	0.2	0.4	0.1
Total systematic	0.6	0.5	0.7	0.2
Statistical	6.6	6.8	1.7	1.0