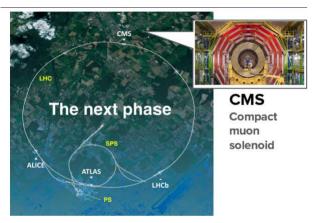
Development of Mip Timing Detector for the CMS Phase-2 Upgrade and LGAD sensor in Korea

KSHEP workshop 2025/11/19-11/22

Youngdo Oh (Kyungpook National University)


Based on various talks presented at Korean Physical Society meeting (2025/10/22-10/24) (Thanks to KCMS MTD group)

> Installation and Commissiong of a Multi-Purpose Test Bench for LGAD Sensor and Hybrid Performance Evaluation

> > Taiwoo Kim and Chang-Seong Moon

On behalf of the CMS Collaboration

Kyungpook National University

Timeline: hilumilhc.web.cern.ch/content/hl-lhc-project

luminosity 4000 fb

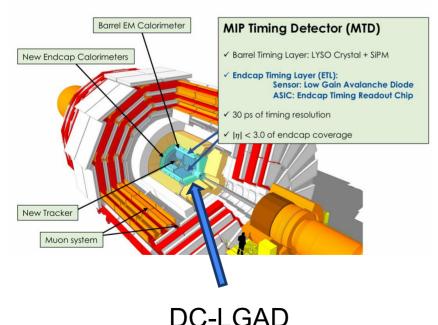
of CERNISPS 2025

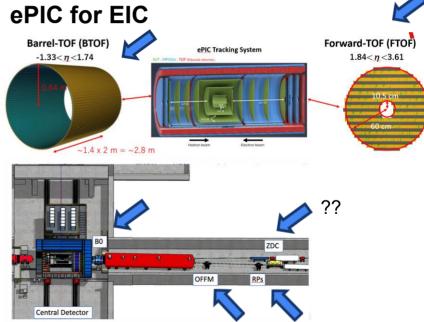
Fabrication of LGADs for timing detectors

> Kvunamin Lee on behalf of KCMS MTD group 2025 KPS Fall Meeting, 2025-10-22

Performance of Irradiated LGAD Sensors Studied at the 2025 CERN SPS Test Beam

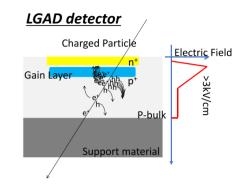
> Geunpil An (GWNU) On behalf of the CMS Collaboration

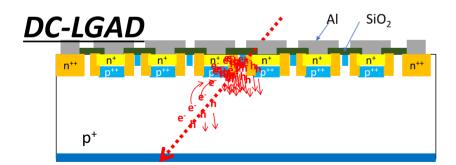




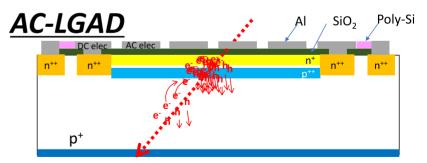
LGAD sensor

- LGAD(Low Gain Avalanche Detector), silicon sensor
- Future particle and nuclear physics experiment have adopted LGAD sensor for fast timing detector.


CMS for HL-LHC

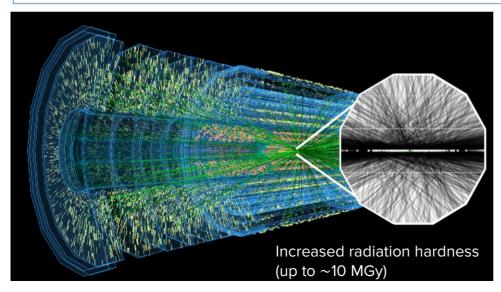


LGAD sensor


- LGAD has a thin gain layer making high electric field
 - High electric field makes high signal rise time and improves time resolution; ~ 30ps
 - Gain: ~ 20, < 100
 - Fast developing technology

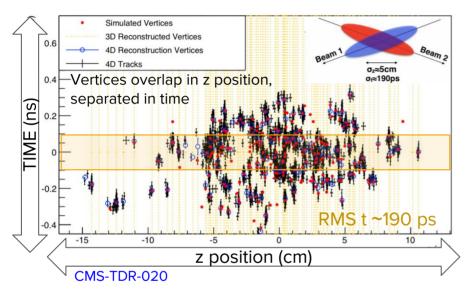
Each pixel has its gain layer

→ There is inactive area


Large gain area

- → Reducing inactive area
- → better position resolution by charge sharing

High-Luminosity LHC (aka Phase-II) upgrade

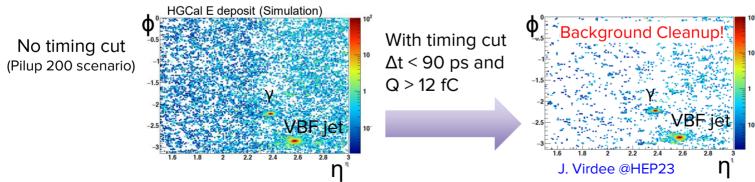

Ambitious goal: $L_{int} > 2500 \text{ fb}^{-1}$ in 9 years of operation (for a total delivered luminosity of 3 ab⁻¹)

	Bunch intensity [protons / bunch]	β* [cm]	Peak lumi [cm ⁻² s ⁻¹]	Pileup (μ)	Int. lumi / year [fb-1]
LHC design	1.15 · 10 ¹¹	55	1 · 10 ³⁴	23	30
LHC today R	un3 1.6 · 10 ¹¹	60/18	2.2 · 10 ³⁴	64	120
HL-LHC R	un4 2.2 · 10 ¹¹	15	5–7 · 10 ³⁴	140–200	up to 300

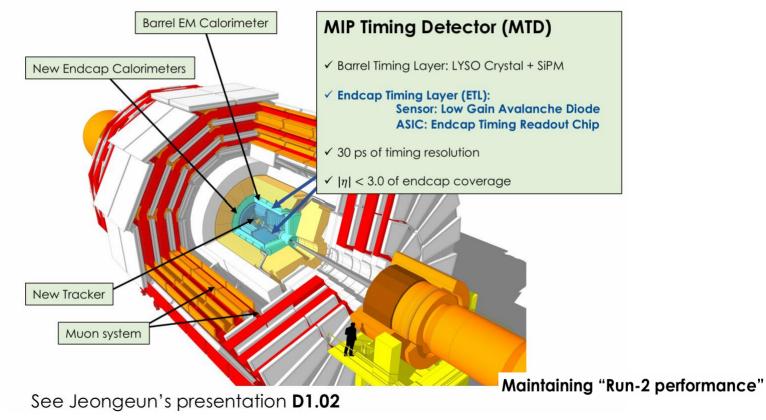
Expecting 140 – 200 simultaneous interactions per bunch crossing (pileup)

Why Timing is important at the HL-LHC?

HL-LHC's high pileup requires unprecedented new detectors technologies

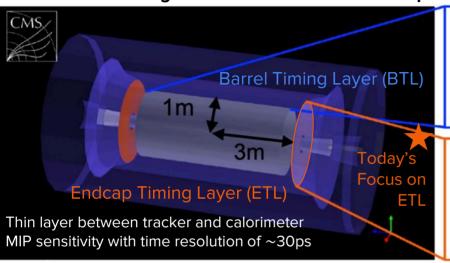

Addition of

MIP Timing detectors (MTD) to CMS detector


⇒ 4D vertexing/tracking enables new capacity to mitigate pileup, enhanced detection of VBF/LLP signatures, Particle Identification...

1 example is here,

Great pileup mitigation in VBF ($H \rightarrow \gamma \gamma$) events with $1 \gamma + 1 \text{ VBF}$ jet in quadrant Calorimeter (η , ϕ)



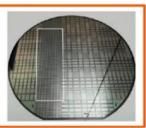
CMS Detector and MIP Timing Detector

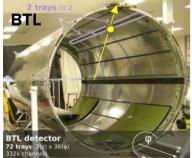

CMS MIP Timing Detector at a Glance

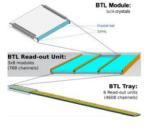
A NEW MIP Timing Detector will be installed for precision timing of minimum ionizing particles

BTL: LYSO bars + SiPM read-out

- ► TK/ECAL interface ~ 45 mm thick
- > |n| < 1.45 and p_T > 0.7 GeV
- ► Active area ~ 38 m²; 332k channels
- ► Fluence at 3 ab⁻¹: 2×10¹⁴ n_{eq}/cm²

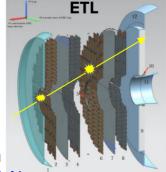


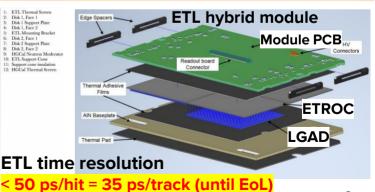

ETL: Si with internal gain (LGAD)


➤ On the HGC nose ~ 99 mm thick

ETL Support Cone

- $ightharpoonup 1.6 < |\eta| < 3.0$
- ► Active area ~ 14 m²; ~ 8.5M channels
- ► Fluence at 3 ab⁻¹: up to 2×10^{15} n_{eq}/cm^2





BTL time resolution

< 40 (60) ps/track (at EoL)

How better can we do with MIP timing detector?

Table 1.1: Expected scientific impact of the MIP Timing Detector, taken from Ref. [8].

Signal	Physics measurement	MTD impact
$H \rightarrow \gamma \gamma$ and	+15-25% (statistical) precision on the cross section	Isolation and
H→4 leptons	→ Improve coupling measurements	Vertex identification
$VBF \rightarrow H \rightarrow \tau\tau$	+30% (statistical) precision on cross section	Isolation
	→ Improve coupling measurements	VBF tagging, p _T ^{miss}
НН	+20% gain in signal yield	Isolation
	→ Consolidate searches	b-tagging
EWK SUSY	+40% background reduction	MET
	→ 150 GeV increase in mass reach	b-tagging
Long-lived	Peaking mass reconstruction	β_{LLP} from timing of
particles (LLP)	→ Unique discovery potential	displaced vertices

so as to achieve a level of performance comparable to the Phase-1 CMS detector at pileup of about 200. The integrated luminosity × efficiency is increased and this gain is equivalent to collecting data for three additional years beyond the ten year run planned for the HL-LHC.

CMS-TDR-020

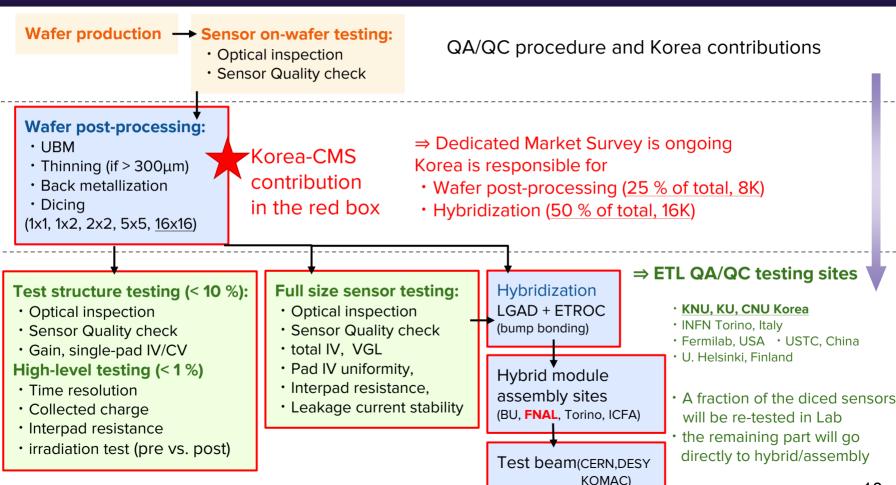
Korea CMS(KCMS) MTD upgrade Group

~ 30 professors, Phd researchers, engineers and students

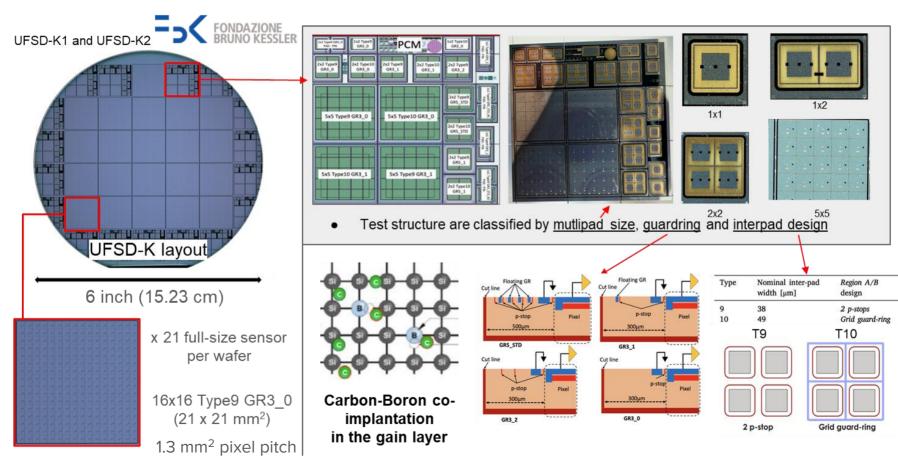
5 institutes

- Kyungpook National University
- Korea University
- Seoul National University
- Chonnam National University
- Gangneung-Wonju National University

What Korea CMS MTD group is doing


CMS ETL development

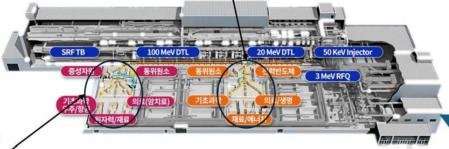
- LGAD test
- Module assemble
- Beam test


General LGAD R&D for future experiment

- TCAD simulation
- Co-work with Korean foundry (ETRI)

Roadmap of Sensor QA/QC

FBK UFSD Sensor Design and Specification



Proton Irradiation Campaign in KOMAC

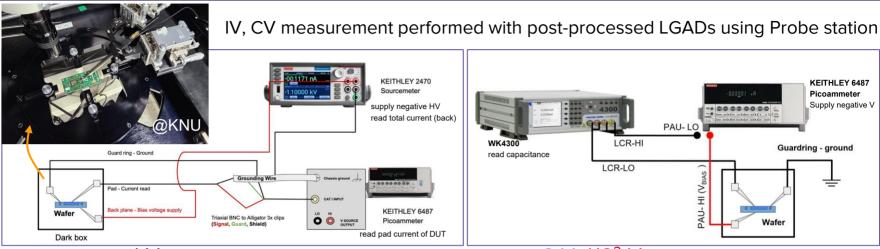
KOMAC (Korea Multi-purpose Accelerator Complex)

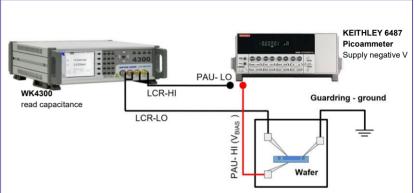
TR103 (100 MeV versatile target room)

For both room, beam flux would be 1E10-1E11/pulse

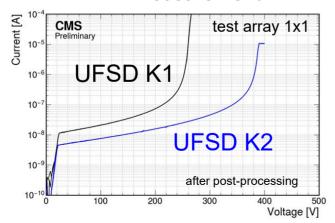
- → Depend on the beam status
- → Beam size: 30 mm ø
 - insure the fluence within 10% uncertainty
 - Outside the area beam is still active
- → only use single sample per each irradiation
- With 100 MeV beam, deposited dose is so small and expect larger irradiation time
 - → Decide to use 20 MeV beamline (TR23)

Gyeongju

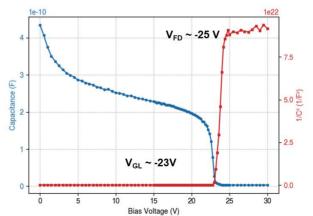

2025 KPS Spring meeting: Daeieon, Seonghak Lee


North Korea

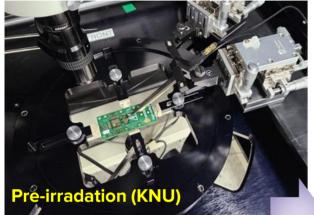
Pyongyang 평양


IING

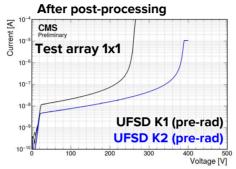
IV, CV Characterizations of LGAD (test array)

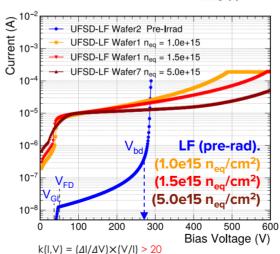


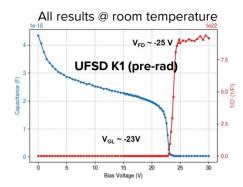
I-V measurement

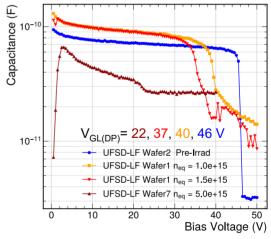



C-V, 1/C²-V measurement

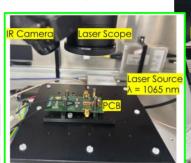

Static Test - IV/CV characteristic of LGAD

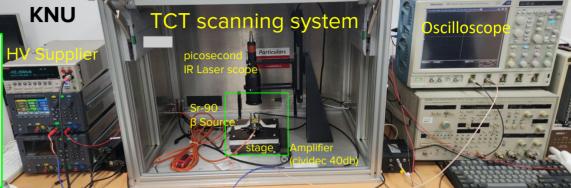

Static Test with Probe Station




I-V measurement

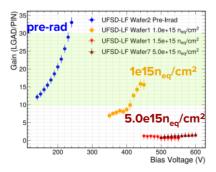
C-V, 1/C²-V measurement

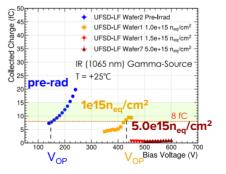



T.W Kim and J.Y. Kim (KNU)'s talks (B1.04, P2-pa.012) KPS 2025 Fall

High-level Test – Gain/Collected Charge/Time Resolution

Test Bench with Laser / β-source





Transient Current Technique (TCT) system from Particulars

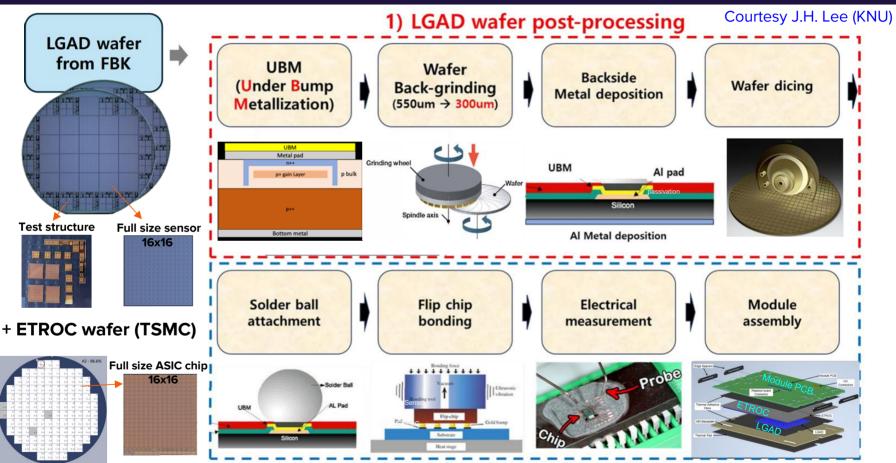
KNU Test Bench with Laser (Room Temp)

Gain (LGAD/PIN) vs. Bias V

Collected Charge vs. Bias V

ETL Testing Site: KNU Clean Room

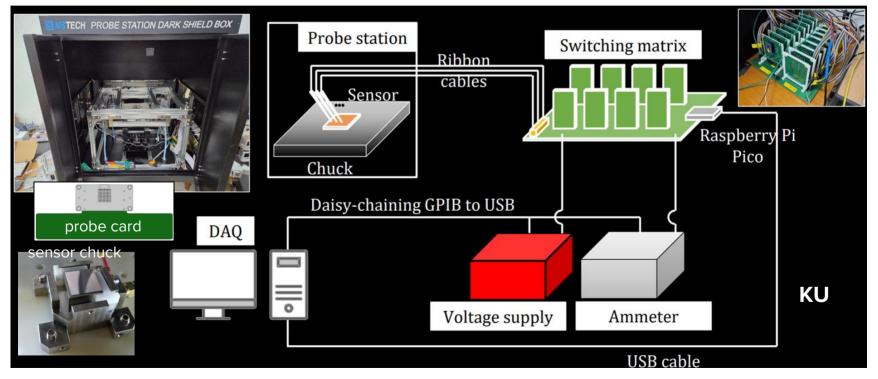
Air shower



Main Chamber

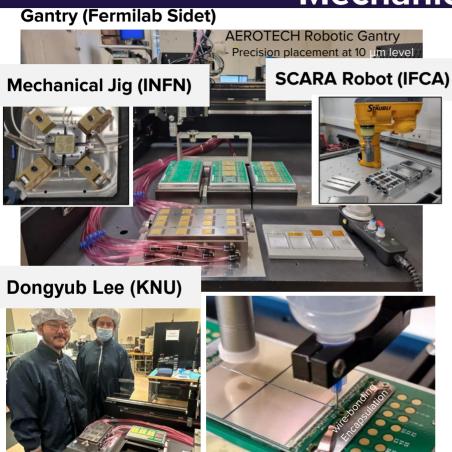
Wire Bonding Machine / Probe Station

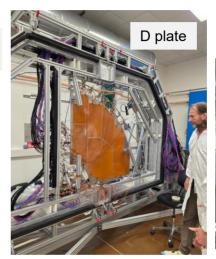
- We built dedicated clean room (class 1000) as an ETL tesing site.
- ❖ This room will serve a QA / QC site during entire ETL production period.

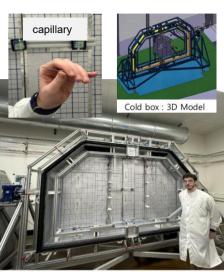

Wafer post-processing and Hybridization

2) Bump bonding and module assembly

Test for full size LGAD (16x16)


- New setup with probe card, switching matrix, Jig system, and DAQ system in development at KU.
- To efficient QA/QC testing for full size LGAD 16x16 (256) channel:
- SW update is ongoing: automated, scalable, and remotely controlled daq testing system.

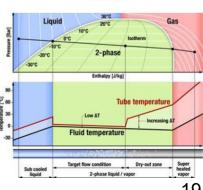

Custom-built switching matrix enables selective readout of any pixel w/o manual reconnection H.Y Jeong (KU)'s Talk (B1.07) KPS 2025 Fall


ETL hybrid Module assembly(FNAL)

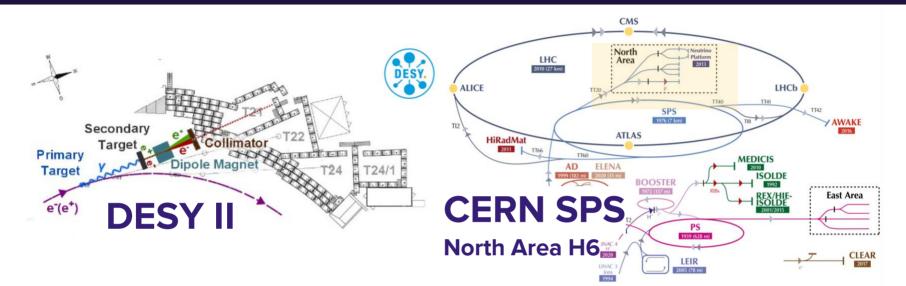
Mechanics(CERN)

CERN





Cold box

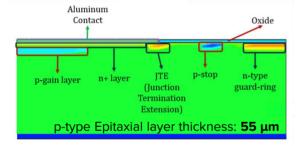

Hanseul Lee(CNU)

Test Beam Facilities

- Particle type: electron beam
- Energy 1 6 GeV
- Used parameters:
- Energy = between 3 GeV and 5 GeV
- Rate = \sim 1k particles/s·cm³
- Beam Size = \sim 12x12 mm²

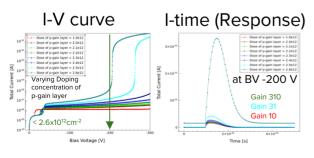
- Particle type: hadron beam (pions, protons)
- Energy 10 205 GeV
- Used parameters:
- Energy = between 100 and 120 GeV
- Intensity= ~10⁸ particles per spill (4.8s)
- Beam Size = \sim 20x20 mm²

Wonderful team - Never develop alone!

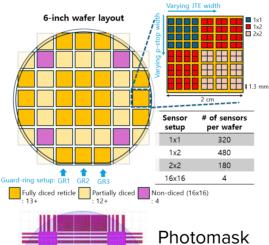


LGAD R&D

LGAD Design and Fabrication in Korea


Design and fabrication of the LGAD by KCMS group (Photomasking ongoing)

Design & Simulation



Synopsys Sentaurus

TCAD Simulation

Photomask design

design 6 layers

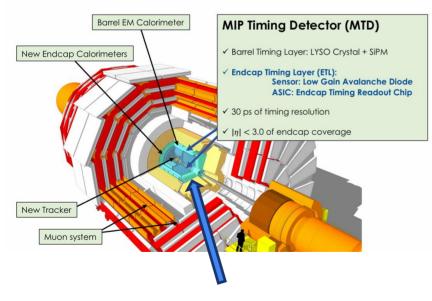
by H.S. Ahn (KNU)

Fabrication

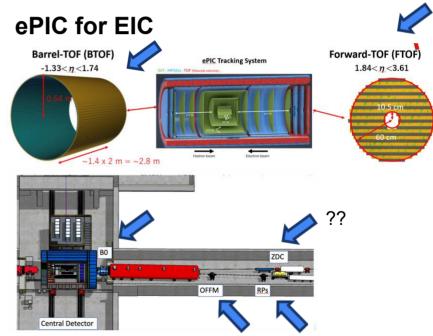
KCMS is collaboration with ETRI (한국전자통신연구소) for the fabrication of LGAD using photomasks & wafers

Full depletion voltage	~ 25 V
Breakdown voltage	~ 250 V
Gain	~ 10
Timing resolution	< 50 ps

Plan of LGAD R&D


- LGAD design
 Based on the UFSD design
 TCAD simulation for optimization of the design
- Photomask
 The draft is almost ready
- Process design
 The draft of run-sheet is almost ready
- Fabrication plan @ ETRI
 Fab-in by the end of November
- Goal
 Working LGAD
 AC-LGAD, Large area LGAD → Future experiments & other applications

Summary


- CMS will deploy new precision timing detector for 4D vertexing reconstruction;
 K-CMS is leading major pieces of the high-radiation Endcap Timing Layer (ETL) effort.
- K-CMS team spans the almost full R&D chain: Sensor post-processing, UBM/bump-bonding, hybrid/module assembly, QA/QC, irradiation campaigns, and test-beam validation.
- Also, K-CMS wants to design and fabricate LGAD sensor in Korea, which finalizes the full LGAD R&D process.
- The full chain of LGAD R&D process will be used to participate other future experiment.

Thank you very much for hearing!

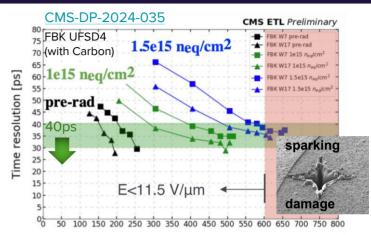
CMS for HL-LHC

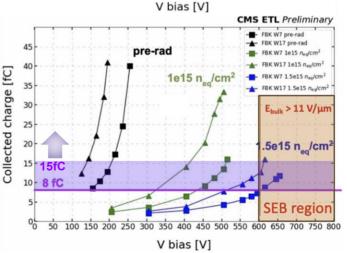
DC-LGAD

AC-LGAD

Back up

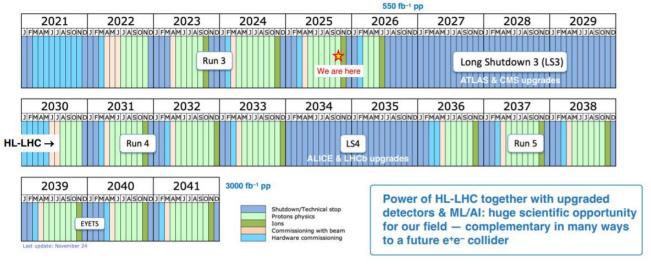
Radiation damage study of LGAD

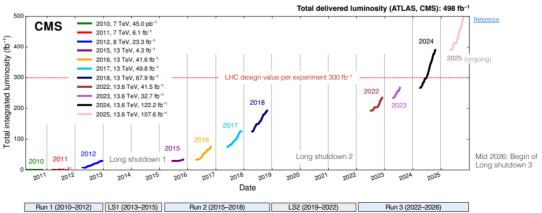

- LGAD must be qualified up to $\phi \sim 1.5 2.5 \times 10^{15} \, n_{eq}/cm^2$ (innermost ETL); Run cold (-25°C) with bias V margin;
- Radiation damage mechanism:


Acceptor removal deactivates p+ doping in gain layer ⇒ Degrading gain, collected charge Q

$$p^+(\Phi) = p_0^+ \cdot e^{-c_A \Phi}$$
 c_A = Acceptor removal coefficient

Strategies to recover the gain loss after irradiation

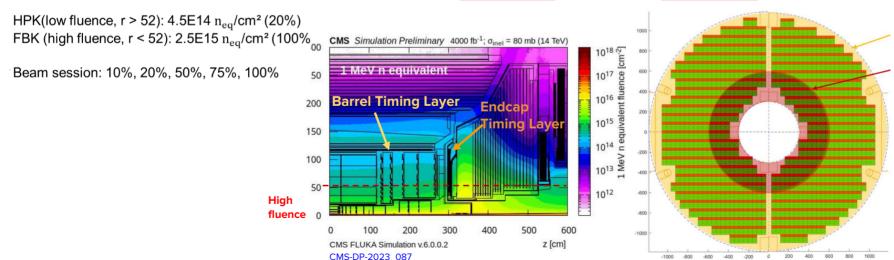

- 1. Carbon co-implantation (slows removal)
- 2. Raise bias V (keep E-field $\lesssim 11.5$ V/ μ m to avoid SEB)
- ETL Targets:
- Q ≥ 15 fC, ~40 ps for unirradiated (pre-rad) sensor
 Q ≥ 8 fC, ~40 ps for irradiated sensor up to the EoL
- Uniformity & Safety: maintain Q ≥ 8–10 fC at EoL, out of SEB region (≤ 605 V for 50µm thickness).



^{*} Single-event-burnout (SEB) from rare, large ionizing events where excess charge leads to highly localized conductive path

HL-LHC timeline

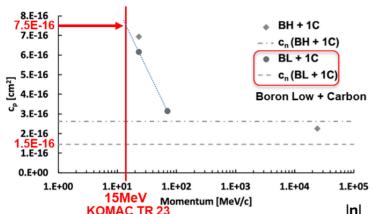
Key LGAD sensor Operating Voltages definition


- \cdot V_{gl} : Gain layer depletion voltage, proportional to the doping concentration and position of the gain implant
- \cdot V_{fd} : Sensor full depletion voltage, proportional to the doping concentration of the sensor bulk
- \cdot V_{op} : Operation voltage, the voltage where new sensors will operate
 - un-irradiated : $Q(V_{op}) = 15 fC$,
 - irradiated : $Q(V_{op}) = 8 fC$
- · V_{MaxOp}: Maximum voltage of operation without extra noise
 - · At least 10 V from breakdown and Lower than 605 V (SEB limit)
- · V_{bd}: Breakdown voltage

Plan for Irradiation Campaign at KOMAC in Nov

				3000 fb ⁻¹		1.5×3000 fb ⁻¹	
Region	$ \eta $	r (cm)	z (cm)	n_{eq}/cm^2	Dose (kGy)	n_{eq}/cm^2	Dose (kGy)
Barrel	0.0	116	0	1.65×10^{14}		2.48×10^{14}	27
Barrel	1.15	116	170	1.80×10^{14}	25	2.70×10^{14}	38
Barrel	1.45	116	240	1.90×10^{14}	32	2.85×10^{14}	48
Endcap	1.6	127	303	1.5×10^{14}	19	2.3×10^{14}	29
Endcap	2.0	84	303	3.0×10^{14}	50	4.5×10^{14}	7 5
Endcap	2.5	50	303	7.5×10^{14}	170	1.1×10^{15}	255
Endcap	3.0	31.5	303	1.6×10^{15}	450	2.4×10^{15}	675

	Ratio to Endcap 3.0 region	
1	10.3%	
	11.3%	
	11.9%	
	9.5%	
	18.8%	
	45.8%	
	100 %	


Nominal doses & fluences at various locations of timing layer

Proton Fluence calculation (NIEL factor)

Updated Fluence

: $2.5 \times 10^{15} \, n_{eq}/cm^2$ @ EOL

Hardness factor (NIEL factor) k = 5

$$\frac{V_{\rm GL}(\Phi)}{V_{\rm GL}(0)} = \frac{N_{\rm A}(\Phi)}{N_{\rm A}(0)} = e^{-c(N_{\rm A}(0))\Phi},$$

 V_{GL} : depletion voltage of the gain layer N_A : active acceptor concentration

 $egin{aligned} \mathcal{C}_n \end{aligned}$: acceptor removal coefficient of neutron $egin{aligned} \mathcal{C}_{\mathcal{D}} \end{aligned}$: acceptor removal coefficient of proton

ا (%) 1MeV Neutron Fluence

1.6 (10%)
$$2.5 \times 10^{14} \text{ n}_{eq}/\text{cm}^2$$

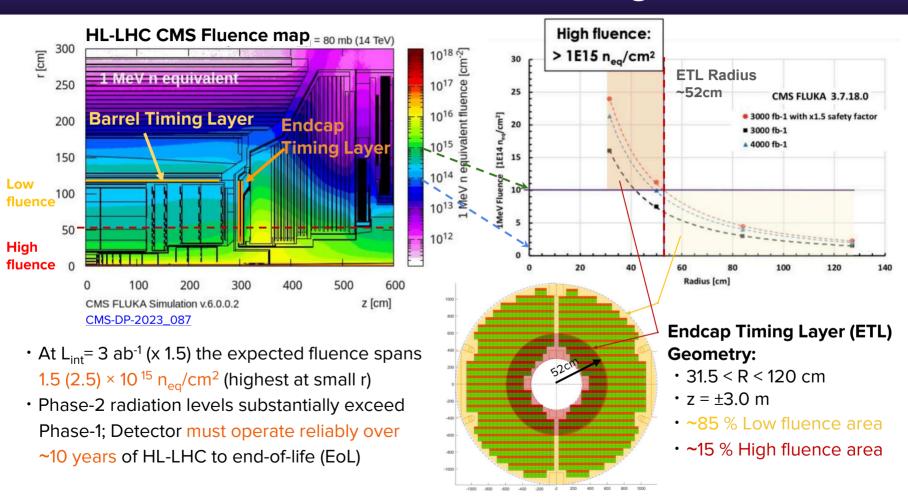
2.0 (20%)
$$2.0 \times 10^{14} \text{ n}_{eq}/\text{cm}^2 \times 1/5$$

$$2.7 (75\%) 1.875 \times 10^{15} n_{eq}/cm^2$$

$$3.0 (100\%) 2.5 \times 10^{15} n_{eq}/cm^2$$

Proton Fluence

$$5\times10^{13}~n_p/\text{cm}^2$$


$$1 \times 10^{14} \text{ n}_{p}/\text{cm}^{2}$$

$$2.5 \times 10^{14} \text{ n}_{p}/\text{cm}^{2}$$

$$3.75 \times 10^{14} \text{ n}_{p}/\text{cm}^{2}$$

$$5 \times 10^{14} \text{ n}_{p}/\text{cm}^{2}$$

Radiation Hardness: Fluence gradient

