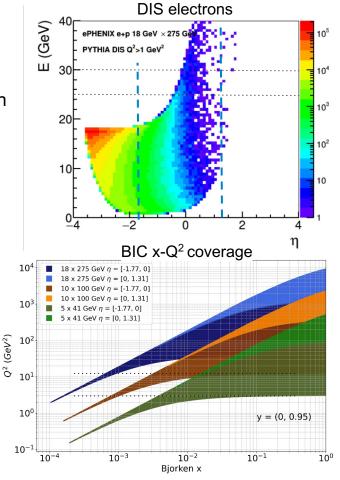

R&D status of the Barrel Imaging Calorimeter for the ePIC experiment

Sanghoon Lim
Pusan National University

ePIC – The EIC General-Purpose Detector

Detector Requirements for BIC


https://eic.jlab.org/Requirements/

Identify scattered electrons and measure their energy, in high Q² events, also decay electrons, e.g., from vector or heavy flavor meson decays, and measure DVCS photons and decay photons

- Electron ID up to 50 GeV and down to 1 GeV and below
 - Energy resolution < $10\%/\sqrt{(E)}$ + (2-3)%
 - \circ High power for e/ π separation down to 1 GeV/c
- Photon measurements up to 10 GeV
- γ/π⁰ separation up to 10 GeV
 - Distinguishing two showers with an opening angle down to 30 mrad

Assist with muon identification

Sufficient dynamic range to **detect MIP** signals in all layers

A Hybrid Imaging Calorimeter

Combination of a high-performance sampling calorimeter with silicon sensors for shower profiling

Start from mature layered Pb/ScFi technology with side-readout (same as the GlueX calorimeter) for state-of-the-art sampling calorimeter performance

Insert layers of monolithic AstroPix sensors (ultra-low-power silicon sensor developed for NASA) in the first half of the calorimeter to capture a 3D image of the developing shower

L

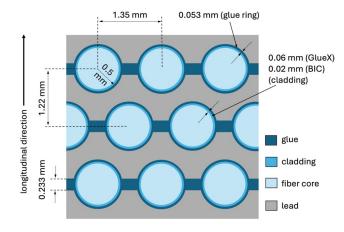
Pb/ScFi Layer Technology

Our Pb/ScFi layers follow the GlueX Design

Energy resolution at GlueX: $\sigma = 5.2\% / \sqrt{E} \oplus 3.6\%^{1}$

 GlueX has 15.5 X₀, and could not constrain the constant term (due to low energies) → fixed in FTBF/CERN Beam Test (< 2%)

Position resolution in z: $1.1 \text{cm}/\sqrt{\text{E}^{2}}$


2-side SiPM readout, Δt measurement

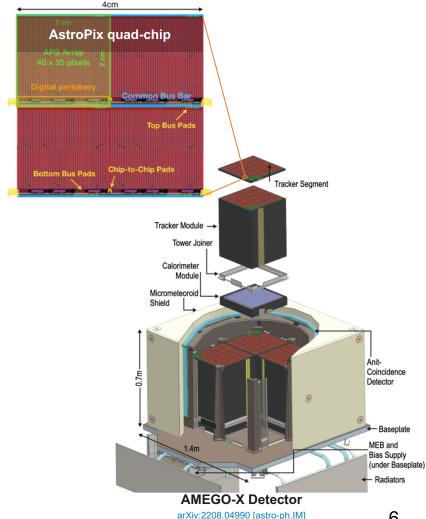
Mature technology used in Barrel ECals (GlueX, KLOE)

- Detailed studies on **calorimetry performance**, including the light collection uniformity in fibers, light collection efficiencies, etc.
- Construction (lead handling, swaging, Pb/ScFi layers assembly, module machining) is fully developed for GlueX
 - Z. Papandreou, https://halldweb.jlab.org/DocDB/0031/003164/

Long-lead procurement items are ongoing for BIC (past FDR)

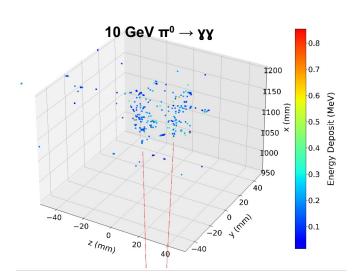
- SiPMs 1.2 x 1.2 mm² arrays, 50 um pitch (Hamamatsu S14160-6050-04 or similar)
- Single Clad Kuraray (SCSF-78, Ø 1mm)

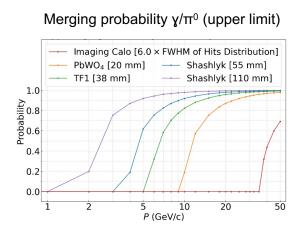
- 1) Nucl. Instrum. Meth. A, vol. 896, pp. 24–42, 2018
- 2) Nucl. Instrum. Meth. A, vol. 596, pp. 327–337, 2008

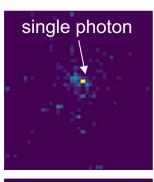

Imaging Layer Technology

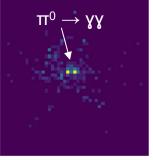
Imaging layers will use the AstroPix sensors

 Developed for NASA AMEGO-X space mission <u>arXiv:2109.13409</u> [astro-ph.IM]

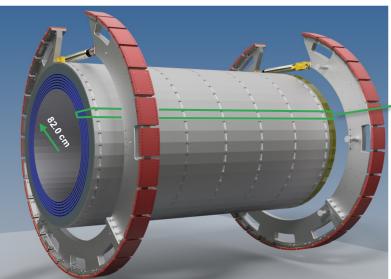

Key features:


- Very low power dissipation will be used in space!
- Good energy resolution (thick silicon sensor)
- 500 μm pixel size (~144 μm resolution)
- Perfect for use in calorimetry!
- First silicon layer has sufficient resolution to be used as a tracking layer behind the DIRC (replacing the MPGD layer)




Particle Identification

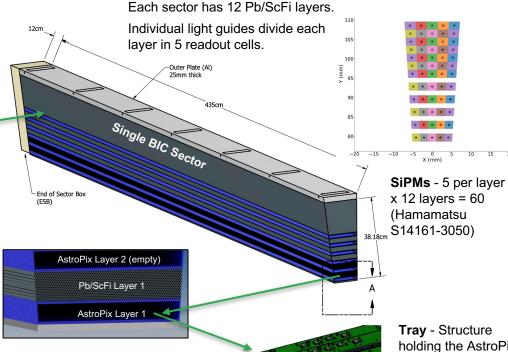
Photons and Neutral Pions



- Precise position resolution and shower imaging allow for excellent separation of γ/π^0 based on the 3D shower profile
- Upper limit unticipated from the AstroPix position resolution and shower profile: well above 10 GeV
- First insights from a simple neural network approach (~82% pion rejection at 90% efficiency above 10 GeV with the current status of model training lower limit)

Barrel Imaging Calorimeter

Sector Mechanics

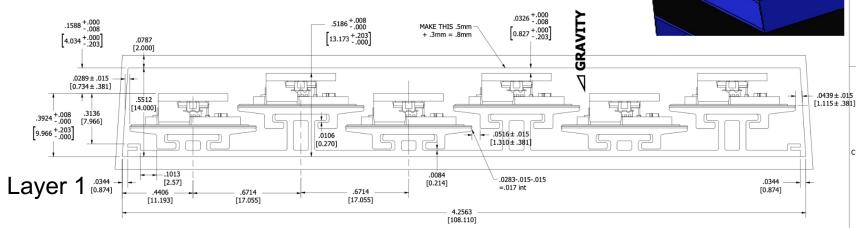

Total BIC weight ~42.5 US tons

AstroPix Module - Nine AstroPix sensors daisy-chained together on Flex PCB.

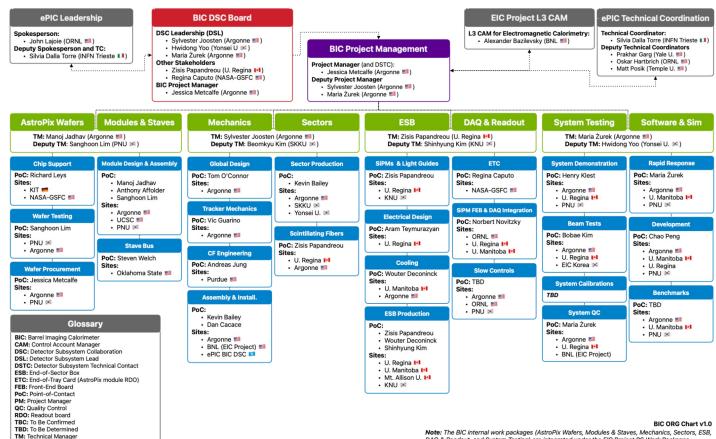
A stave consists of 12 modules.

A tray contains of 6-8 staves.

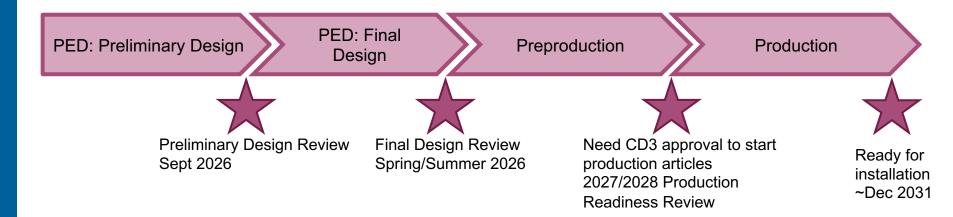
Pb/SciFi Layers - 17 rows of fiber between corrugated lead.



Tray - Structure holding the AstroPix staves for a single layer (217.5 cm long).


BIC Imaging Layers

A Module is an electrically testable elementary unit for imaging layers

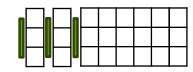

- \circ 9 AstroPix HV-CMOS chips 2 cm \times 2 cm
- Base Plate (Aluminum) slides on Stave rail
- Rigid(-flex) PCB readout
- 12 modules form a Stave and readout at the end of the Sector using End of Tray Card (FPGA) (~217cm)
- Tray consists of (6, 7, 7, 8) Staves (56 Staves/Sector)
- There are a total of 48 sectors with a length of ~435 cm
- The BIC is made up of 31104 Modules using ~280k chips

BIC Organization Chart

BIC Project Phases

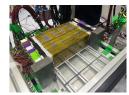
- Preliminary Design Review, 60% design completion
- AstroPix v3 (and v4)
- BabyBCal & Lanky BCal
- Individual components
- First (second) test articles

- AstroPix v5
- One full sector
- Final designs (90%)
- Production style procedures
- AstroPix v6 validation tests


- AstroPix v6
- 48 sectors

Beam tests of the prototype detector

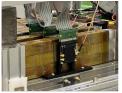
May 2024


First piece

Aug 2024 CERN PS

First Pb/SciFi prototype production in Korea First beam test Successful data taking

Mar 2025 KEK


More Pb/SciFi layers Improved energy resolution **New DAQ**, Trigger, Hodoscope, Calibration Extension cable test

June 2025 KEK

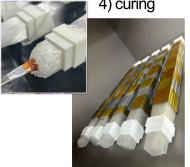
AstroPix synchronization with trigger time

July 2025

synchronized data taking of AstroPix + Pb/SciFi Proof-of-principle imaging of electrons and pions Resolution fulfill the EIC requirement

Pb/SciFi Prototype Module Production

1) Pb plate preparation

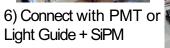

2) Stacking with fiber

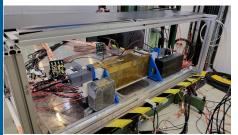
3) Cutting fiber

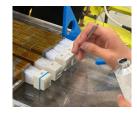
4) curing

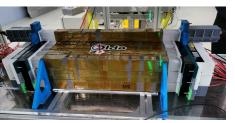
5) polishing

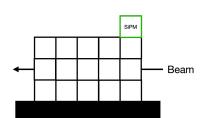
Produced 33 of 32x3x3 cm³ unit modules for beam test

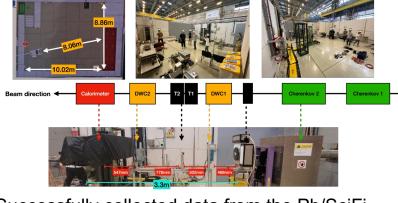


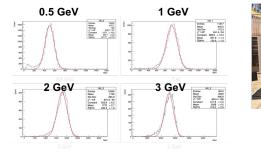


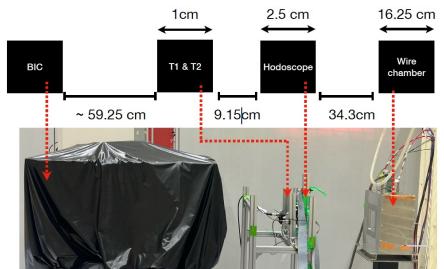


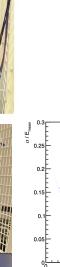


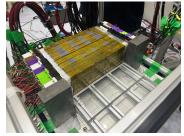

First beam test at CERN PS T10 in Aug 2024








Successfully collected data from the Pb/SciFi calorimeter prototype produced in Korea using our DAQ system with 0.5, 1, 2, and 3 GeV electron beams.


Second beam test at KEK PF-AR in Mar 2025

Bigger, Deeper Pb/SciFi setup: 32x12x21cm³
Refine calibration procedure
Smooth operation with new DAQ
Operation of auxiliary detectors: Hodoscope, Trigger

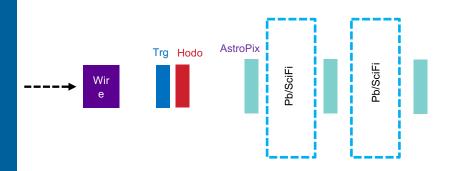
Energy Resolution

. EIC requirements : 10% € ⊕ (2-3)%

0.25

. TB2025® KEK PF-AR

0.05

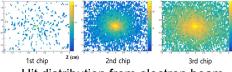

. TB2025® KEK PF-AR

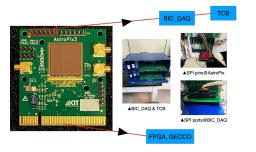
0.05

. TB2025® KEK PF-AR

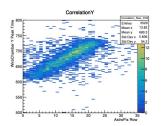
Third beam test at KEK PF-AR in June 2025

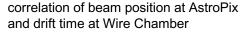
3 AstroPix Layers to be synchronized



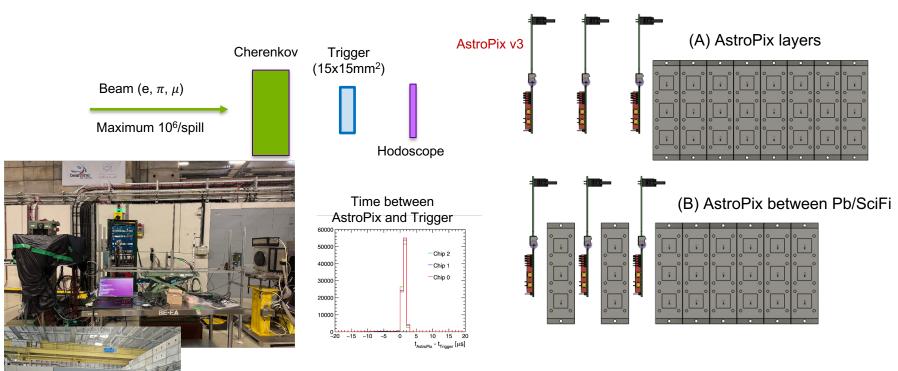

3 AstroPix Layers between Pb/SciFi

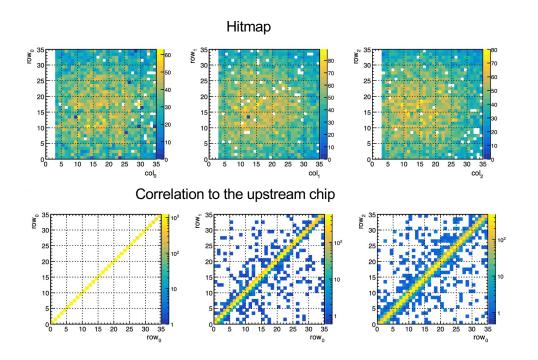
S13,S14 SiPM with LG


Hit distribution from electron beam in GEANT4 simulation

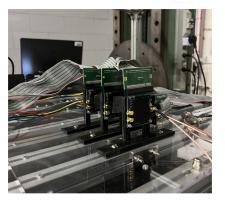


Synchronization between AstroPix and other detectors in the DAQ system produced in Korea Preparation of the shower profile study.


SiPM and Light Guide test

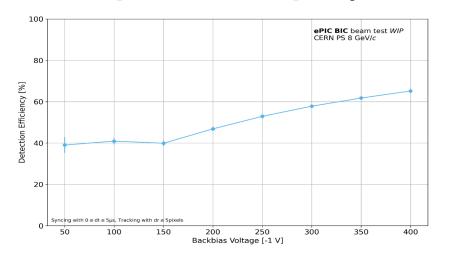


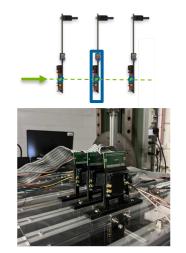
Recent beam test at CERN PS T10 in July 2025



Goal: Proof-of-principle imaging of electrons and pions using a synchronized setup of AstroPix in the beam environment, using synchronized data taking between AstroPix and Pb/SciFi

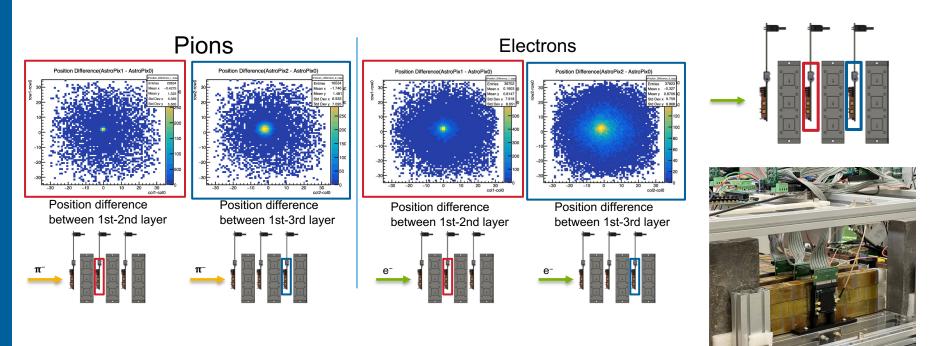
Synchronization of three layers of AstroPix v3



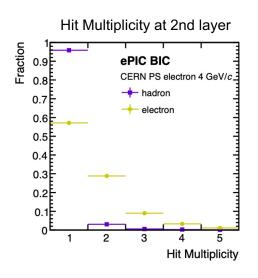


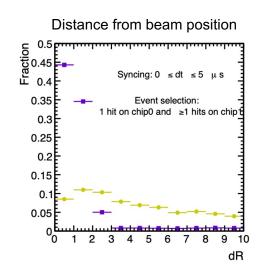
- Three AstroPix v3 layers are tested using the electron/pion beam at CERN PS.
- Correlations to the upstream show good alignment and data synchronization between AstroPix.
- The integrated system works well at a 2.7 kHz trigger rate on the beam. (BIC rate < 1 kHz/chip)

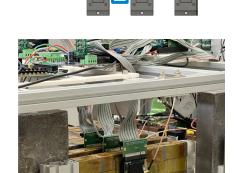
AstroPix v3 chip tracking efficiency (Shallow depletion depth)



Detection efficiency in percentage as a function of bias voltage

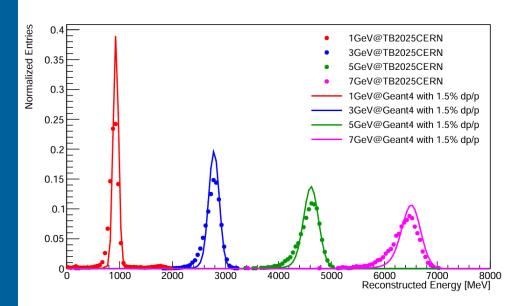

- Proof-of-principle for a method to measure tracking efficiency of AstroPix v3 under beam conditions.
- It is calculated as the probability of having a hit on the position estimated from hits on the first & third chips.
- The shallow depletion of v3 was known and is addressed in v5 with increased depletion.


Different shower profiles of electrons and pions



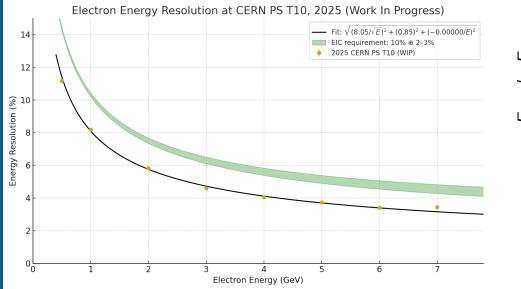
Proof-of-principle imaging of electrons and pions was performed using a synchronized AstroPix setup in the beam environment.

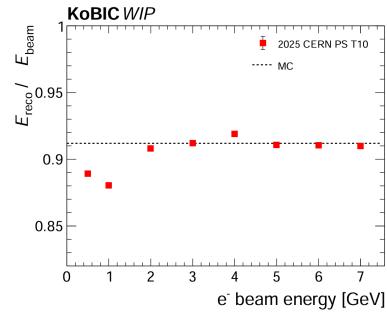
Different shower profiles of electrons and pions



- The hit multiplicity and distance from the beam position at the second AstroPix v3 chip differ for electrons and pions.
- The electron/pion separation power in the beam test condition will be enhanced by AstroPix information on shower shape.

Electron energy measurement

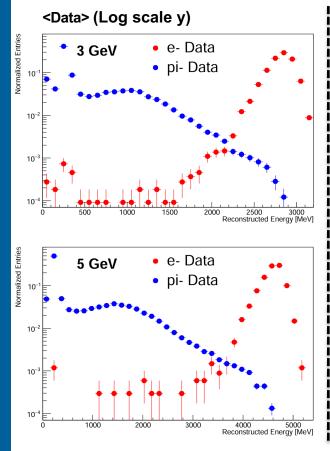

Applying beam momentum spread (dp/p) to simulation

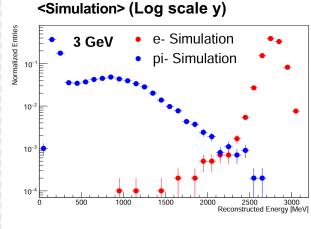

$$\sigma_{
m total} = \sqrt{\sigma_{
m original}^2 + \sigma_{
m spread}^2}$$

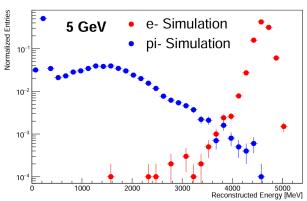
*1.5% dp/p: Expected momentum spread for the 3 mm collimator setup

- According to the GEANT4 simulation, energy resolution is affected by the beam momentum spread.
- At CERN PS T10, the beam momentum spread is 0.6~15%, depending on the collimator setup. (arXiv:2507.02567)
- With an additional momentum spread of 1.5%, the resolution in the simulation is shown with the data.

Energy Resolution & Linearity

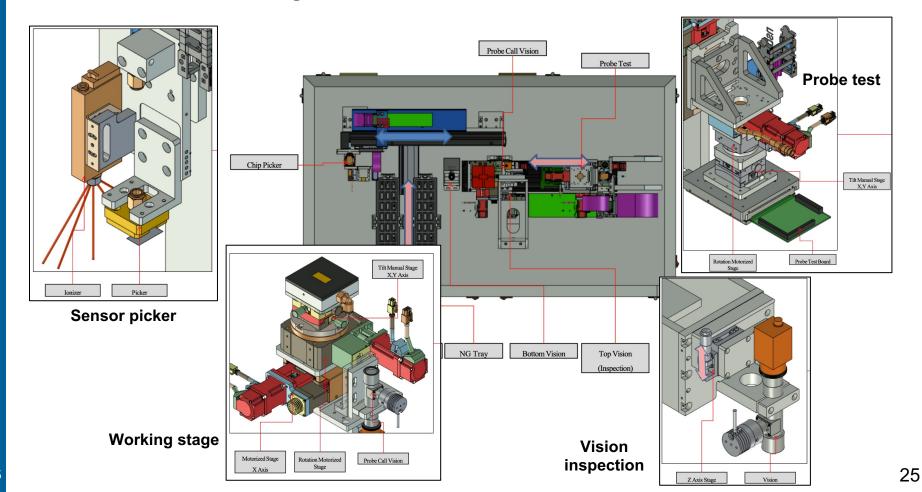



Resolution: (Stochastic) 8.05 %, (Constant) 0.85 %, (Noise) 0.00 %


$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus c/E$$

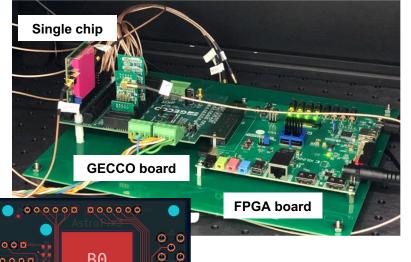
• The energy resolution has been progressively improved, achieving the best performance in this beam test.

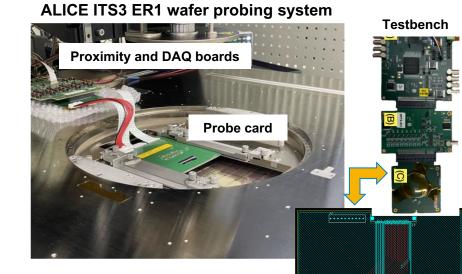
e⁻/π⁻ Separation in Beam Test Data



- Separating pions from electrons in data using a Cherenkov counter.
- Electron and pion energy distributions in data and simulation show good agreement.
- E/p allows discrimination between electrons and pions entering the calorimeter.

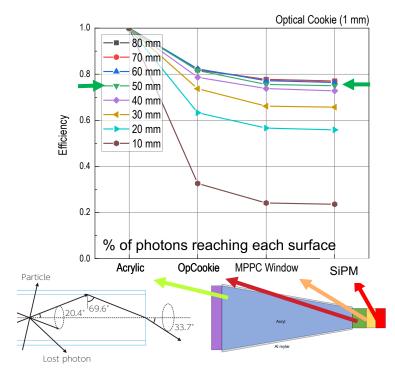
AstroPix test system




AstroPix test system

B₀

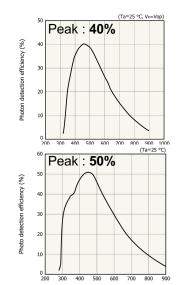
suba



- Initial version of probe card for AstroPix v3: a simple version for the chip carrier board.
- Uses already validated GECCO and FPGA board setup, which will be connected with flexible cables
- Recently, the probe card design for v3 has been done by a local manufacturer in Korea

Development of the readout system

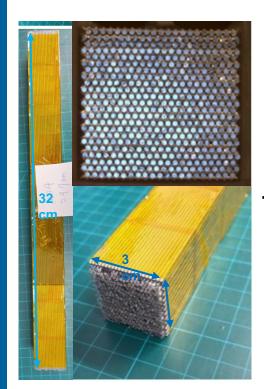
Transmission efficiency with LG length



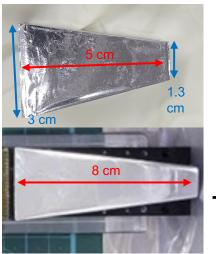
Optical simulation with random photon generation (ϕ < 20.4°) **Efficiency drops** rapidly with lightguide length **under 5 cm.**

Silicon Photomultiplier

Wavelength (nm)


SiPM (S13 & S14, Hamamatsu)

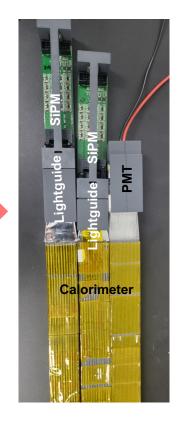
Photon detection efficiency (S14 > S13)


Dark count rate (S14 > S13)

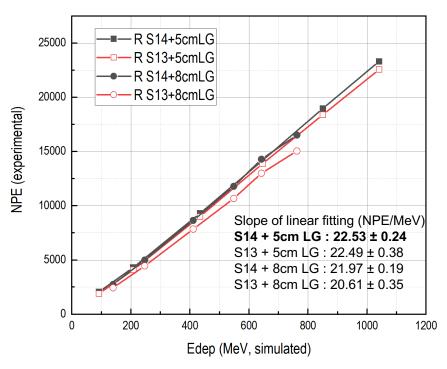
Neutron radiation hardness (S13 > S14)

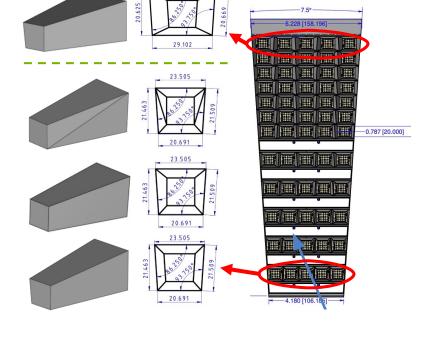
Development of the readout system

1. CalorimeterPb plates & Scintillating fibers

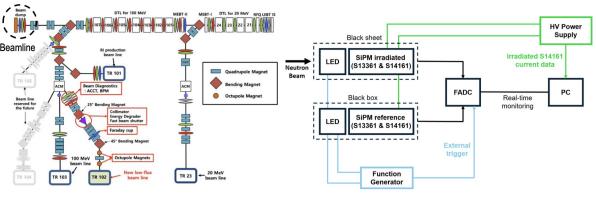


2. Lightguide
Square, acrylic lightguides
wrapped with Al Mylar (5, 8 cm)
Bundled fiber for PMT





Development of the readout system



Beam test results

- 1. Linearity of SiPM readout
- 2. Small difference in light yield for SiPM readout (< 10%)

Future plan Lightguides matching the dimensions for actual deployment will be tested

SiPM radiation hardness test

Date	Beam setting	Fluence [1MeV n _{eq} /cm²]	LED Hz	Remarks
Jun 26	10 Hz × 5 min 10 Hz × 4 min 5 Hz × 19 min	1.04×10°	100 Hz	Comparison of S13 and S14 S14: higher photon detection efficiency S13: lower dark count rate
Sep 5	1 Hz × 60 min vs 5 Hz × 12 min	6.20×10 ⁸ (each)	100 Hz vs 500 Hz	Two pairs (S14 & S13) Same fluence, test for rate dependence

- Real-time SiPM irradiation monitoring: Two SiPMs (Hamamatsu S13361 and S14161) were irradiated with neutron beams at KOMAC, and monitoring of single-photoelectron response (LED window), dark current rate, and baseline shifts.
- Performance change evaluation: Pre- and post-irradiation IV measurements were performed to quantify leakage-current increases and breakdown-voltage shifts for both devices.

SiPM radiation hardness test

S14161 shows a lower ADC sigma as a noise indicator, while S13361 exhibits lower leakage current and better single-photoelectron peak separation during irradiation.

ePIC Schedule

AstroPix v5 Specifications

Pixel Matrix:

36 cols x 34 rows

- —32 Columns with Standard NMOS Comparator
- —2 Columns with dynamic Feedback
- 1 Column with NMOS Comparator and Resistor Load
- —1 Column with NMOS Comparator and PMOS Load

500u Pixel Pitch and 300u Pixel Size 3 Tunebits per Pixel

Pixel Dynamic Range 20 keV - 700 keV

Noise Floor 5 keV (2%@662 keV) Bias Voltage up to 400-500 V to

maximize depletion

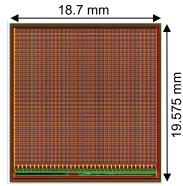
Fully NMOS Comparator

In Pixel amplifier with Dynamic

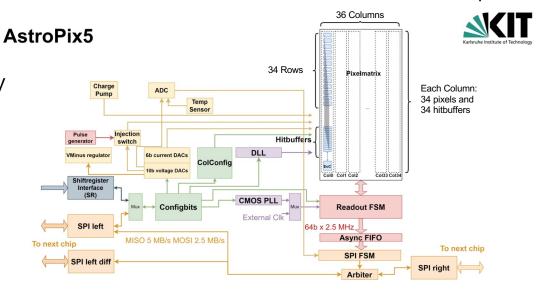
Feedback option for improved Dynamic

Range (2 columns)

Power Consumption:


Pixel 4.6 uW

Pixel matrix 5.3 mW


Digital 2.2 mW

— 700 uW DigitalTop

Total: ~2 mW/cm²

 $18.7 \text{ mm} \times 19.575 \text{ mm chip}$

Relevant AstroPix v6 Specifications

Pixel Matrix:

39 cols x 37 rows

- —35 Columns with Standard NMOS Comparator
- —2 Columns with dynamic Feedback
- 1 Column with NMOS Comparator and Resistor Load
- —1 Column with NMOS Comparator and PMOS Load
 500u Pixel Pitch and 300u Pixel Size

3 Tunebits per Pixel

Pixel Dynamic Range 20 keV - 700 keV

Noise Floor 5 keV (2%@662 keV)

Bias Voltage up to 400-500 V to

maximize depletion

Fully NMOS Comparator

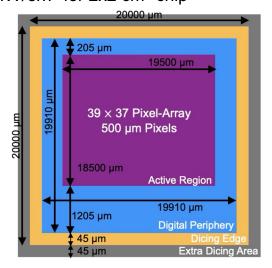
In Pixel amplifier with Dynamic

Feedback option for improved Dynamic

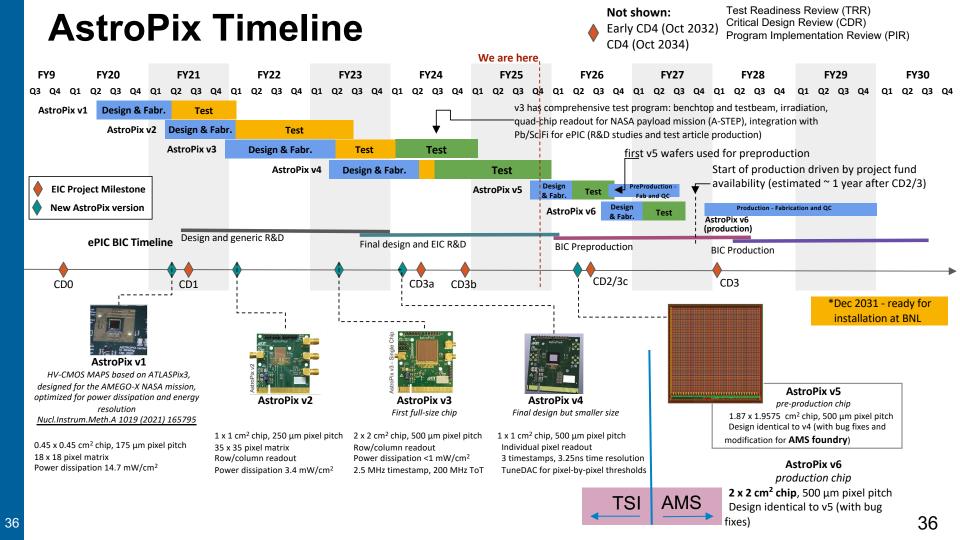
Range (decision from v5 validation)

Power Consumption:

Pixel 4.6 uW

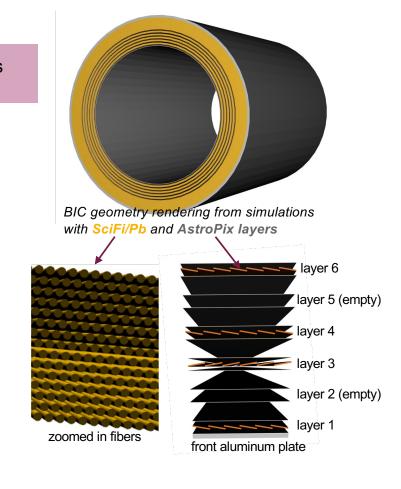

Pixel matrix 5.3 mW

Digital 2.2 mW


- 700 uW DigitalTop

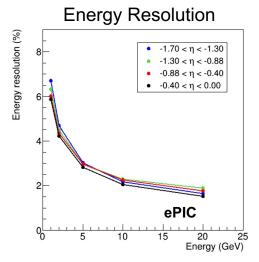
Total: ~2 mW/cm² for 2x2 cm² chip

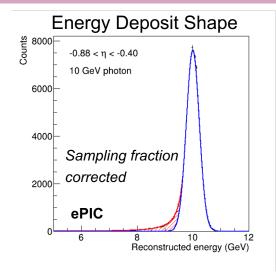
AstroPix v6 will be scaled up to **20 mm × 20 mm** chip size

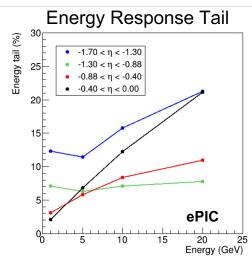


AstroPix v6 do not expect major design changes. Scaled up chip size to required 2 cm × 2 cm dimension with bug fixes and selection of dynamics range feedback and NMOS comparator.

Simulations


- **Simulation** results based on realistic detailed simulations benchmarked in beam and bench environment.
- Official ePIC geometry implementation with realistic detailed BIC geometry implemented
 - Full detector with all subsystems, the majority of services
 - Cladded SciFi placed in Pb and glue mixture
 - AstroPix layers: "turbofanned" staves with chips; expected dead areas included
- Realistic digitization and reconstruction with effective model for the optical output including:
 - light attenuation and phe statistics (benchmarked in GlueX and adjusted for fiber differences)
 - o **light guide efficiencies** from optical simulations
 - thresholds based on SiPM HGCROC-template noise
- EM and Had responses in simulations benchmarked with the beam test data up to 10 GeV



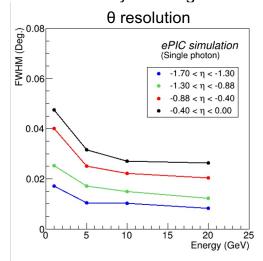

Energy Response

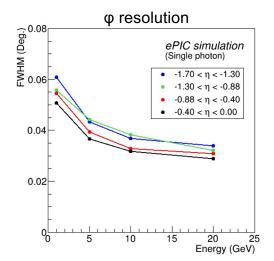
Photons

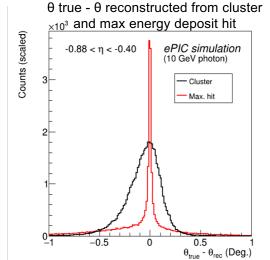
- Energy resolution meets requirement < $10\%/\sqrt{(E)}$ + (2-3)%
- Benchmarked in beam tests.

Fit parameters

parametere										
η	a/√(E) [%]	b [%]								
(-1.7, -1.3)	6.60(0.03)	0.66(0.04)								
(-1.3, -0.88)	6.11(0.01)	1.24(0.01)								
(-0.88, -0.4)	5.91(0.02)	1.24(0.02)								
(-0.4, 0)	5.85(0.01)	0.88(0.02)								

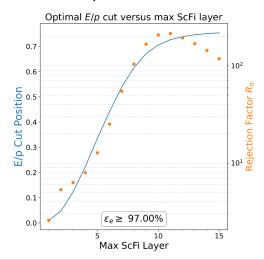

- Based on the realistic simulation of the Pb/ScFi part of the calorimeter with attenuation and photoelectron statistics
- Resolution extracted from a Crystal Ball fit σ
 - Energy tail evaluated as a difference between the Crystal Ball and the extrapolated Gaussian fit


Position Response with AstroPix


Photons

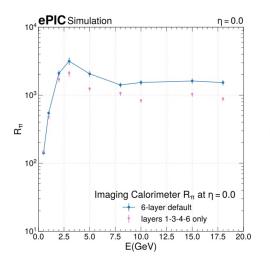
- Angular resolution well below 0.1 deg (on the level of single pixel resolution) well below any towerlike calorimetry
- Position measurements benchmarked in beam tests
- Methods: max-deposit hit at the shower-start layer compared to θ, φ from 3D topological clustering.
 Result: hit-level method gives an order of magnitude better angular resolution.

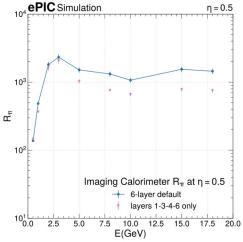
 Small dependence seen with changing η. The φ resolution is worse than θ because the shower particles are smeared by the magnetic field.


Particle Identification

Electrons and Pions

• High e/π separation down to 1 GeV/c delivers required ~90% electron purity with combined ECAL+DIRC. See backup for more details. (P-DET-ECAL-BAR.26.10.05)


Method: Optimized cut on E/p from different depth of Pb/ScFi layers at very high electron efficiency + **Convolutional neural network** utilizing energy and spatial information for shower


Example for 2 GeV e/π

Scan through different number of SciFi/Pb layers to find the optimal maximal depth.

Peak ~ layer 10-11

Pion rejection: 4-layer achieves >10³ at low–mid energies where it is most needed; 6-layer achieves >10³ across most energies and is a good upgrade option for high-luminosity, higher-energy runs.

Sectors and Mechanics

Design constraints defined and mostly frozen; geometries and envelopes documented; BIC and Project engineers aligned.

Design challenges: self-supporting sector with ePIC integration; FEA in progress using delamination data at CF–Pb and Pb/SciFi interfaces.

Sector test articles:

- 0.5 m GlueX-style matrix reproduction completed, critical equipment commissioned. SciFi QC procedure established.
- Short bulk Pb/SciFi with GlueX fibers and CF-frame integration ongoing
- Long 3 m article next; full-scale 4.35 m sector for preproduction targeted for 2026

AstroPix tracker mechanics: staves integrated into trays → modules slide onto trays → trays slide into sector drawer/slot.

 First extruded-aluminum mechanical article built and tested for tolerances and stability

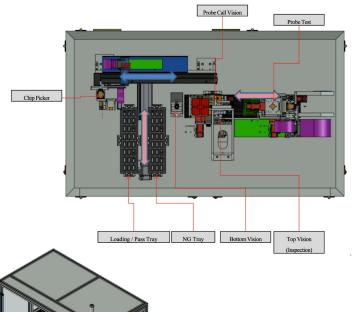
First tracker test article - module base with stave like railing

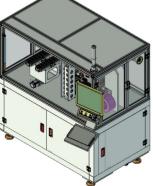
Mechanical risks are under active test with a defined path to full-scale sector in 2026. First test articles of tracker support and SciFi matrix tested.

Wafers and Modules

Chip testing scope

- Scale: 31,104 modules, 279,936 AstroPix chips.
- Need: automated chip-level testing before module assembly with established QC procedures.


QC coverage: sensor bias with HV, analog and digital checks, injection scans for relative energy calibration.


v3 Pilot (this fall → 2025 Q4)

- Probe card: simple v3 card for the carrier board, built with a Korean manufacturer; uses validated GECCO + FPGA setup; leverages ALICE experience
- Throughput target: validate the QC flow on ~80 v3 chips this fall
- Automation: single-chip v3 test machine from C-ON Tech due 2025 Q4 to run initial validation, refine the test flow, document the full chain, and deliver qualified v3 chips for prototype modules

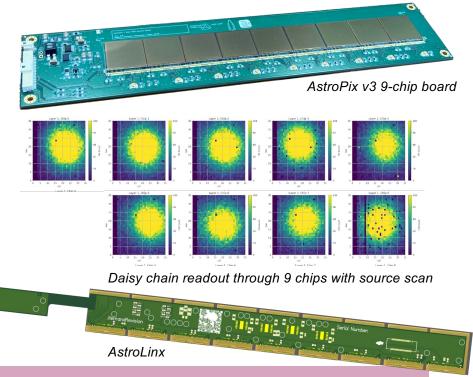
Preproduction (v5/v6, FY26-FY27)

- Design update: v5 ready in FY26 for preproduction
- Process readiness: finalize procedures and acceptance criteria

Single-chip v3 test machine is under production by C-ON tech in Korea

We are moving from a validated v3 pilot to a preproduction workflow for v5/v6, establishing throughput, traceability, and acceptance criteria needed to de-risk delivery of 280k+ chips for 31k modules.

Wafers and Modules


Scope: single-flavor module for more than 30,000 units

AstroLinx (PCB): optimized for module performance, meets required operation specs; first design completed and reviewed. Expected this fall; another iteration anticipated.

9-chip PCB test article: In hand to mock up AstroLinx, verify power-distribution stability and daisy-chain readout. Successfully tested on a bench with sources.

Module builds: plan to assemble about six prototypes this fall using an extruded aluminum base, AstroPix v3, and AstroLinx; test PCB designed to validate electrical performance; initial base-plate prototype produced to define assembly steps.

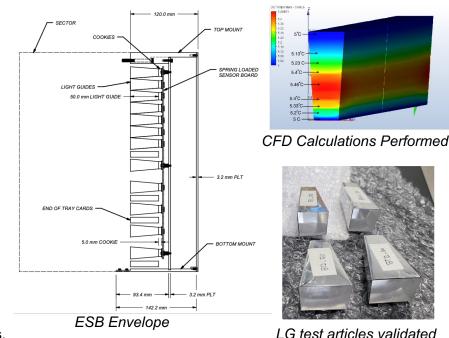
Open design items: base-plate locking mechanism, adhesive selection, flex-PCB connector finalization

AstroLinx has been reviewed and the 9-chip PCB validated with sources; we are proceeding to module test articles to lock performance and assembly while closing the few remaining design choices for preproduction.

ESB (End of Sector Box) and DAQ

Function: on-detector power distribution and data collection. Encloses cooling and provides mechanical protection.

Interfaces with ePIC: integration procedure nearly final; service requirements provided (electrical cabling, cooling, DAQ).


Thermal/mechanical validation: Ongoing: development and construction of PCB (thermal) test article to validate CFD calculations.

SiPM readout path: CALOROC \rightarrow common RDO \rightarrow FELIX.

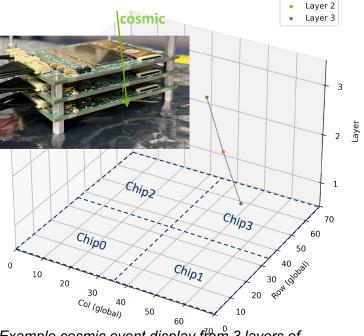
- Lightquides design complete, geometry fixed.
- CALOROC design under submission; evolution of HGCROC with CMS and ALICE heritage.
- SiPMs passed FDR at CD-3a/3b.

AstroPix readout path: End-of-Tray Card (ETC) → FELIX.

 ETC to be designed by NASA GSFC; start pending contract processing; leverages existing AstroPix FPGA board designs.

ESB envelope and interfaces nearly finalized; CALOROC at submission; ETC awaits contract start, with existing designs reducing risk. SiPM design completed. Lightguides and cookies nearly finalized.

System Testing

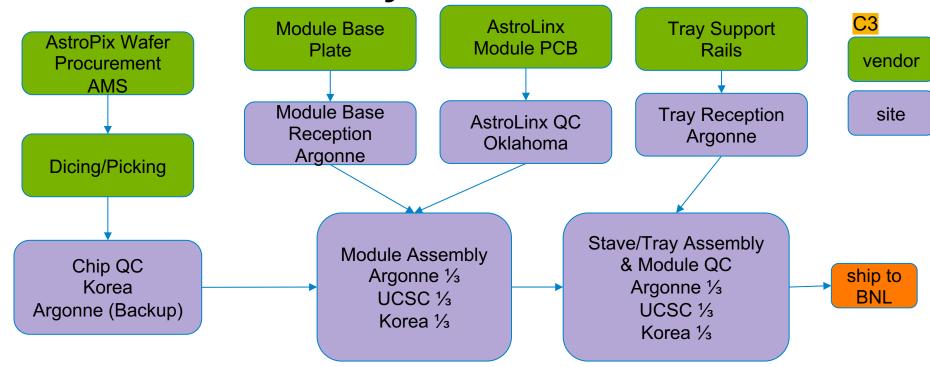

Function: validate system-level performance and design, establish system-level QC/QA procedures.

AstroPix imaging layers: multichip and multilayer test articles to demonstrate daisy-chaining, synchronization, and energy, position, and timing response; bench and beam tests completed.

Pb/SciFi calorimetry: Bulk (\sim 15.5 X₀) and SFILs (\sim 1.5 X₀) tested with e and π beams, validating energy response and e/ π separation in the Pb/SciFi section; simulations benchmarked.

• ANL-built SFILs: first units show good MIP response with HGCROC.

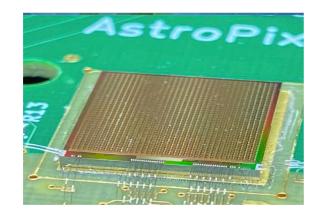
Large-scale integration (PED, PREP): readout and large-test-article integration underway to validate system-level performance, calibration, and QC/QA at the AstroPix Tray and Sector levels; outputs will also inform component-level QC procedures.


Example cosmic event display from 3 layers of daisy-chained AstroPix v3 quad chips

The testing program de-risks the design and defines system QC/QA for production; current validations confirm calorimeter energy performance and rate capability, and validate the simulation against data.

Sector

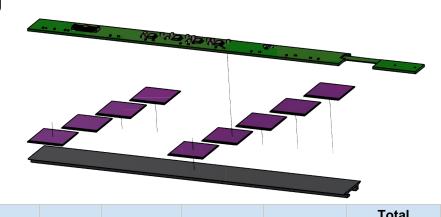
ESB


Workflow: Tracker Layers

- Wafer procurement with AMS
- One flavor for each part
- Thorough QC at bare chip level to ensure good chips/sensors
- Keep all steps as simple and streamlined as possible for industrial style manufacturing

Wafer QC Probing

- 1. Purchase wafers
- 2. Dicing
 - a. picked by vendor, comes in a waffle pack
- 3. Automated wafer (or chip) QC probing
 - a. Visual inspection
 - b. Full chip functionality
 - c. Sensor IV
 - d. Pixel-by-pixel performance
- 4. Ship to module assembly sites

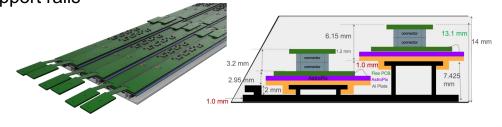


→Expect to have a high yield after chip testing until glued on a module

												Total
												production
							Total	Inactive	Batches/we	# of	Total	years (w/ 85%
		# per	#	hours/bat	minutes/pi	#	Person	hours/ba	ek/producti	production	production	annual
Wafer QC	# parts	batch	batches	ch	ece	people	hours	tch	on line	lines	weeks	efficiency)
chip probing	357,319	60	5,956	5	5	1	596	4.9	15	6	66	1.5

Module Assembly

- 1. Stage chips and module base plates onto the tooling
- 2. Glue chips to the base plate, cure
- 3. Stage the module and AstroLinx onto the tooling
- 4. Glue AstroLinx to the module, cure
- 5. Wire bond
- 6. Pot wire bonds (under consideration)


		# per	#	hours/bat	minutes/pi	#	Total Person	Inactive hours/b	Batches/we ek/producti	# of production	Total production	production years (w/ 85% annual
Module Assembly	# parts	batch	batches	ch	ece	people	hours	atch	on line	lines	weeks	efficiency)
chip reception	303721	100	3037	0.17	0.1	1	506	0	240	3	4	0.10
module gluing	33747	6	5625	5	-	1	2812	4.5	5	18	63	1.4
gluing AstroLinx	33747	6	5625	5	-	1	2812	4.5	5	18	63	1.4
wire bonding	33747	1	33747	0.25	15	1	8437	0	160	3	70	1.60
potting	33747	6	5625	0.17	1.7	1	937	8	240	3	8	0.18

Stave/Tray Assembly

- 1. Slide modules onto *the bottom row* of the tray support rails
- 2. plug connectors, quick test, rework
- 3. Slide modules onto *the top row* of the tray support rails
- 4. plug connectors, quick test, rework
- 5. Full electrical QC w/ end-of-tray card
- 6. Pack and ship to BNL

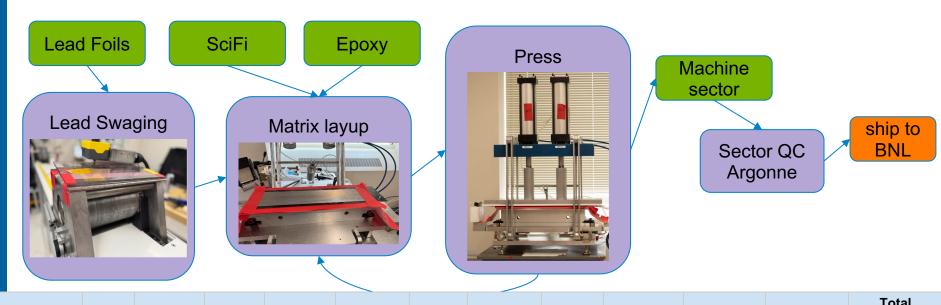
Reworkable design:

- connectors rated for mating cycles
- no gluing

Total

Tray Assembly	# parts	# per batch	# batches	hours/bat	minutes/pi	# people	Total Person hours	Inactive hours/b atch	Batches/we ek/producti on line	# of production lines	Total production weeks	production years (w/ 85% annual efficiency)
assemble modules on tray	388	1	388	5	300	1	1940	0	8	3	16	0.37
Tray electrical QC	388	1	388	0.5	30	1	194	48	3	3	43	0.98
packing	388	1	388	0.5	30	2	388	0	80	3	2	0.04

Workflow: Pb/SciFi Sectors & ESB



Production Plan: Mechanical Sector

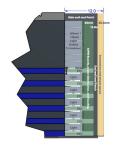
CF Frame

Integration

Sector QC

Sector Assembly	# parts	# per batch	# batches	hours/bat	minutes/pi	# people	Total Person hours	Inactive hours/b atch	Batches/we ek/producti on line		Total production weeks	production years (w/ 85% efficiency)
Fiber QC (1%)	10000	208	48	52	15.0	2	104	104	0.8	1	62	1.4
Matrix layup	576	12	48	75		5	377	377	0.3	2	90	2.0

1.3


5.0

0.4

0.2

Production Plan: End-of-Sector Boxes

- component parts QC
- pre-assembly of ESB
 - SiPM's, CALOROC, cooling
- ESB QC
- Final assembly at BNL

Sector Assembly	# parts	# per batch	# batches	Active hours/bat ch	minutes/pi ece	# people	Total Person hours	Inactive hours/b atch	Batches/we ek/producti on line	# of production lines		Total production years (w/ 85% annual efficiency)
Light guide	5933	60	99	2	2	1	198	12	5	1	20	0.45
SiPM board QC	6022	60	101	2	2	1	202	12	5	1	22	0.5
CALOROC PCB QC	101	1	101	2	120	1	202	0	20	1	5	0.11
End-of-tray card QC	106	1	106	2	120	1	212	0	20	1	5.3	0.12
Cooling QC	100	1	100	0.5	30	1	50	0.5	40	1	2.5	0.06
ESB pre- assembly/QC	100	1	100	2	120	2	400	0	20	1	5	0.11