

Measurement of the effective leptonic weak mixing angle in proton-proton collisions at $\sqrt{s} = 13$ TeV

On behalf of the CMS collaboration

Hyon San Seo University of Rochester Seoul National University KSHEP May 24, 2025

Weak mixing angle

• The weak mixing angle is a fundamental parameter in the Standard model related to the unification of the electromagnetic and weak forces

•
$$\sin^2 \theta_W = \frac{{g'}^2}{g^2 + {g'}^2} = 1 - \left(\frac{m_W}{m_Z}\right)^2 = \frac{1}{4|Q_f|} \left(1 - \frac{g_V^f}{g_A^f}\right)$$

- Measurement of mixing angle
 - consistency check of the Standard model
 - powerful tool for searching for new phenomena
- Effective leptonic mixing angle
 - $\sin^2 \theta_{eff}^l = \frac{1}{4} \left(1 \frac{g_V^l}{g_A^l} \right)$
 - Includes loop corrections and reflects actual Zlepton couplings

$\sin^2 \theta_{eff}^l$ measurement at CMS 13 TeV

- $\sin^2 \theta_{eff}^l = 0.23152 \pm 0.00031$ with CMS Run2 data (138 fb⁻¹)
- The most precise measurement at hadron collider
- With a precision comparable to LEP and SLD
- Published in Phys. Lett. B (2025)

The CMS experiment at CERN measures a key parameter of the Standard Model

With this measurement the LHC is again demonstrating its ability to provide very highprecision measurements and bringing new insights into an old mystery

3 APRIL, 2024

Forward-backward asymmetry (A_{FB})

θ: Angle btw incoming and outgoing particles $\cos \theta > 0$, forward event (F) $\cos \theta < 0$, backward event (B)

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

Forward-backward asymmetry (A_{FB})

• If incoming and outgoing particles have 0.6 **same helicity** → **forward** event is preferred $\sigma_{L \to L}, \sigma_{R \to R} \propto (1 + \cos \theta)^2$ 0.4 **opposite helicity** → **backward** event is preferred 0.2 $\sigma_{L \to R}, \sigma_{R \to L} \propto (1 - \cos \theta)^2$ A_{FB} 0.0 due to angular momentum conservation $ee \rightarrow \mu\mu$ -0.2 $u\bar{u} \rightarrow ll$ $d\bar{d} \rightarrow ll$ -0.4 $\frac{d \sigma_{DY}}{d \cos \theta} \propto (1 + \cos^2 \theta) + A_4 \cos \theta$ -0.6 M_Z 60 80 120 40 100 140 • $A_4 = \frac{8}{3}A_{FB}$ is sensitive to weak mixing angle $E_{\rm CM}/{\rm GeV}$

Challenges in hadron collision

- Electron-positron (LEP, SLD)
 - Forward axis = electron direction
- Proton-antiproton (Tevatron)
 - Forward axis ≈ proton direction
 → PDF uncertainty
 - Dilution from ISR recoil: Collins-Soper (CS) frame
- Proton-Proton (LHC):
 - Forward axis ~ dilepton rapidity direction
 → Larger PDF uncertainty
 - Dilution from ISR recoil: Collins-Soper (CS) frame

Analysis strategy 1 Collins-Soper (CS) frame

- Two beam directions are not parallel in dilepton CM frame
- Due to recoil from ISR (Initial State Radiation)
- Bisect of beams is used as forward axis to minimize dilution of A_{FB}

Analysis strategy 2 Forward axis guess using dilepton rapidity

- In pp collision, it's more challenging to determine forward axis than $p\bar{p}$
- Because we need to infer which proton provided the particle and which provided the antiparticle
- Typically, valence quarks carry more momentum than sea quarks
- Forward axis ~ dilepton rapidity direction

$$\cos \theta_{CS} = \frac{2(E^{l^+} p_z^{l^-} - E^{l^-} p_z^{l^+})}{m_{ll} \sqrt{m_{ll}^2 + p_{T,ll}^2}} \frac{y_{ll}}{|y_{ll}|}$$

Analysis strategy 3 Dilepton rapidity binning

- Forward direction guess is more precise as rapidity get larger
- A_{FB} is measured in bins of rapidity to maximize sensitivity

Analysis strategy 4 Angular-weighted asymmetry A_{FB}^{W}

• High $|\cos \theta_{CS}|$ region has larger sensitivity

Analysis strategy 4 Angular-weighted asymmetry A_{FB}^{w}

- One can measure A_{FB} in bins of $|\cos \theta_{CS}|$ to increase sensitivity
- But we apply weights based on DY angular distribution, which effectively achieves same sensitivity improvement as $|\cos \theta_{CS}|$ binning
- With this technique, systematic errors in acceptance and efficiency cancel

$$A_{FB}^{raw} = \frac{\sum_{F} 1 - \sum_{B} 1}{\sum_{F} 1 + \sum_{B} 1}$$

$$A_{FB}^{w} = \frac{3}{8} \frac{\sum_{F} w_{N} - \sum_{B} w_{N}}{\sum_{F} w_{D} + \sum_{B} w_{D}}$$

$$w_{N} = \frac{1}{|c|} \left(\frac{c}{1 + c^{2}}\right)^{2}$$

$$w_{D} = \frac{1}{1 + c^{2}} \left(\frac{c}{1 + c^{2}}\right)^{2}$$

RED: $A_{FB}(c) \rightarrow A_4$ **GREEN**: Weight appropriately based on statistical power • In actual analysis, there is higher-order term h $1 + c^2 \rightarrow 1 + c^2 + h$

12

Analysis strategy 5 PDF profiling

- A_{FB} at Z peak is most sensitive region to mixing angle
- The sideband region, on the other hand, is sensitive to PDF
- We can constrain PDF using A_{FB} in sideband region to reduce PDF uncertainty, which is the largest systematic uncertainty

Analysis strategy 6 Forward electron

• Central lepton (with tracker) μ : $|\eta| < 2.4$ e: $|\eta| < 2.5$

• Forward electron $g: 2.5 < |\eta| < 2.87$ $h: 3.14 < |\eta| < 4.36$

Analysis strategy 6 Forward electron

	<u> η </u>		$p_{\mathrm{T,min}}^{\mathrm{leading}}$	p ^{trailing} P _{T,min}
μμ	0.00–2	2.40	20 GeV	10 GeV
ee	0.00–2	2.50	25 GeV	15 GeV
	$ \eta_{\rm e} $	$ \eta_{\mathrm{g,h}} $	p ^e _{T,min}	p ^{g,h} T,min
eg	0.00–2.50	2.50–2.87	7 30 GeV	20 GeV
eh	1.57–2.50	3.14–4.36	5 30 GeV	20 GeV

Extend the measurement to higher rapidity region

Dilepton mass distributions

16

Extracting $\sin^2 \theta_{eff}^l$

- Interpretation model: (NNLO QCD) + (NLO+HO EW) + PS + α
 - *MiNNLO_{PS}* Powheg + Photos + Pythia8
 - NLO+HO weak correction
 - Z p_T reweight
- Three methods
 - Fit $A_{FB}^w(|y|, m)$
 - Fit unfolded $A_4(|y|, m)$: $\frac{d^3\sigma}{d|y| dm d \cos \theta_{CS}} \rightarrow A_4(|y|, m) \rightarrow \sin^2 \theta_{eff}^l$
 - Fit $\cos \theta_{CS}$ distributions: $\frac{d^3\sigma}{d|y| \, dm \, d \cos \theta_{CS}} \rightarrow \sin^2 \theta_{eff}^l$

Extracting $\sin^2 \theta_{eff}^l$ with A_{FB}^w

Channel	Absolute rapidity bin edges									$n_{ y }$			
μμ, ee	0.0	0.4	0.8	1.2	1.6	2.0	2.4						6
eg				1.2	1.6	2.0	2.4	2.7					4
eh						2.0	2.4	2.7	3.0	3.4			4
Channel	Reconstructed <i>m</i> bin edges (GeV)									n _m			
μμ, ее	54	66	76	82	86	89.5	92.7	96	100	106	116	150	11
eg, eh		66	76	82	86	89.5	92.7	96	100	106	116		9

- A_{FB}^{w} is measured in bins of $|y_{ll}|$ and m_{ll}
 - $|y_{ll}| < 3.4$
 - $54 < m_{ll} < 150 \text{ GeV}$

Extracting $\sin^2 \theta_{eff}^l$ with A_{FB}^w

19

Extracting $\sin^2 \theta_{eff}^l$ with A_{FB}^w

	$\chi^2_{\rm min}$	bins	p (%)	$\sin^2 \theta_{\mathrm{eff}}^{\ell}$	stat	ехр	th	PDF	MC	bg	eff	calib	other
μμ	241	264	83	23142 ± 38	17	17	6	30	13	3	2	5	4
ee	257	264	60	23171 ± 41	22	18	5	30	14	4	5	3	7
eg	119	144	93	23253 ± 61	30	40	3	44	23	11	12	20	8
eh	105	144	99	23114 ± 48	18	33	9	37	14	10	16	18	6
0.0	501	016		02150 . 01	10	15	•	07	•				
<i>tt</i>	731	816	98	23152 ± 31	10	15	8	27	8	4	6	6	3

Extracting $\sin^2 \theta_{eff}^l$ with unfolded A_4

Channel	$\chi^2_{\rm min}$	bins	p (%)	$\sin^2 \theta_{\mathrm{eff}}^{\ell}$
μμ	62	54	19	23144 ± 39
ee	48	54	69	23190 ± 43
eg	11	12	41	23249 ± 60
eh	9	12	66	23123 ± 48
ll	64	63	39	23154 ± 32

Unlike A_{FB}^{w} , in which acceptance and efficiencies cancel, unfolding requires very good modeling of acceptance and efficiencies.

Comparison of three methods

- $\sin^2 \theta_{eff}^l$ using unfolded A_4 is consistent with $\sin^2 \theta_{eff}^l$ extracted from A_{FB}^w
- \rightarrow Good modeling of acceptance and efficiencies

Results with various PDFs

• CT18Z result is reported as the nominal result

Conclusion

- Weak mixing angle measurement at 13 TeV using CMS Run 2 data (138 $\rm fb^{-1}$)
 - $\sin^2 \theta_{eff}^l = 0.23152 \pm 0.00031$ (CT18ZNNLO)
 - The most precise measurement at hadron collider
 - Unfolded A_4 is also measured for future reinterpretation
 - Published in PLB 10.1016/j.physletb.2025.139526
- We need better understanding on PDF to improve the measurement further

backup

Analysis strategy 7 Precise lepton momentum calibration

- Miscalibration of lepton momentum can introduce unphysical wiggle in *A_{FB}*
- Lepton momentum is calibrated using Z peak