Muon Collider

Un-ki Yang Seoul National University

KSHEP 2025 Spring Meeting, May 22-24 2025, Inha Univ. 1

HEP Particle Colliders

Proton-proton Collider:

- Offer highest center-of-mass collision energies
- Collisions of composite particles
- Discovery potential via Electroweak and Strong Interactions

- > Electron-positron Collider:
- Collision of point-like fermions with well-defined initial state
- Precision measurements via Electroweak Interactions
- At multi-TeV energies electroweak boson colliders

Higher Energy Collider

How far can go to higher energy collider?

$$B \approx 3 \left(\frac{E}{1 \text{ TeV}} \right) \left(\frac{1 \text{ km}}{R} \right) \text{ T}$$

- From 14 TeV to 100 TeV
 - LHC: 27 km size with 8 T magnet
 - FCC-hh:~90 km size with ~16 T magnet

LHC (CERN) 13.6 TeV

Why muon collider?

> Higher mass: avoids synchrotron radiation

$$P \approx 3 \times 10^{-7} \left(\frac{1 \text{ km}}{R}\right)^2 \left(\frac{E}{m}\right)^4 \text{ eV/s}$$

- Point-like particle: can get higher energy reach with lower energy beam compared to protons
- Cleaner to access a EWK machine

Muon Collider

- Why Muon Collider?
 - A unique, compact, high-energy (10 TeV scale) electroweak collider
 - A paradigm-shifting collider: combine the high-energy frontier of pp collider and the high precision of e⁻e⁺ collider
 - Natural next step after HL-LHC and a complement to a future lowenergy Higgs factory
 - Can be realized within one generation (not two!)
- > Growing International Interest:
 - Most of R&D has been done by Muon Accelerator Program in US
 - Now International Muon Collider Collab. (IMC) hosted by CERN + FNAL start to work for muon colliders (3 TeV, 10 TeV)
 - Strong community enthusiasm: Aim High and "Shoot for the muon!"
 - Innovative technologies (accelerator, detector, magnets) attracting early-career researchers

Physics Case

- Precision Standard Model (SM) Measurements:
 - Probe the high-energy regime of "unbroken" electroweak symmetry
 - High-precision studies of Vector Boson Scattering (VBS) at the TeV scale: "first tests of electroweak symmetry breaking "unitarization"
- > Exploring Beyond the Standard Model (BSM) Physics:
 - Higgs Boson: Precision study of properties & potential (next-gen Higgs factory)
 - Electroweak phase transition, baryogenesis, vacuum stability, Higgs portal
 - Dark Matter (DM): Unmatched probes of new Electroweak (EW) particles
 - Others: New gauge forces, fermion interactions, neutrino masses (Heavy Neutral Leptons) up to O(100) TeV scales
- Unique High-Energy Neutrino Program: Complements existing neutrino experiments

Challenges with Muon

- Short Lifetime: 2.2 μs
- > Avg. decay time in lab
- > Time between collisions
- Avg. beam crossing for each inject muons: Lum. is proportional to E
- Fraction of muons decaying within 20m of the interact
- Total energy of decay products within 20m

$$\tau'_{\mu} = 21 \text{ ms} \times \left(\frac{E}{1 \text{ TeV}}\right)$$

$$t = 33 \ \mu s \times \left(\frac{L}{10 \ \mathrm{km}}\right)$$

$$\langle n_{\text{crossings}} \rangle = 620 \times \left(\frac{E}{1 \text{ TeV}}\right) \times \left(\frac{10 \text{ km}}{L}\right)$$

$$f \approx 6.4 \times 10^{-6} \times \left(\frac{1 \text{ TeV}}{E}\right)$$

$$E_{\text{decay}} = 13 \text{ EeV} \times \left(\frac{n_{\mu}/\text{bunch}}{2 \times 10^{12}}\right)$$

Muon Collider Concept

Conceptual layout of the muon collider at CERN (left) and Fermilab (right).

Synergy with neutrino factory

Muon Collider Concept

Accelerator design is driven by the short muon lifetime

- Key Components
 - Proton Driver: produce short, high-intensity proton pulses
 - Target & Front End: Protons hit a target, producing pions, decaying into muons
 - Cooling Stages: Reduce beam emittance (a core technology!) using absorbers and RF cavities in high magnetic fields.
 - Acceleration System: LINAC, Recirculating Linear Accelerators (RLAs), and high-energy accelerator rings (to 1.5 TeV or 5 TeV).
 - Collider Ring: Muon beams collide at full energy.

Muon Collider Parameters

 $\sigma_{x,y}$

- For a 10 TeV muon collider
 N = 2×10¹² particles/bunch
 - $\sigma_{x,y} \simeq 1 \ \mu m$, $\beta^* = 1.5 \ mm$, $\varepsilon_{x,y}(norm) = 25 \ \mu m$ -rad
 - n_{turns}~10³
 - f_{bunch}=5 Hz

(injection rate of bunches)

			\sqrt{s}	\sqrt{s}		$\int \mathcal{L} dt$	
			3 Te	$3 { m TeV}$		$1 {\rm ~ab^{-1}}$	
$N_{-} N^2 f_{coll} - \langle N^2 \rangle_{n_{turns}} n_{turns} f_{bunch}$			10 Te	$10 { m TeV}$		$10 {\rm ~ab^{-1}}$	
$\frac{1}{4\pi\sigma_x\sigma_y}$		$4\pi\sigma_{\perp}^{2}$	14 Te	$14 { m TeV}$		20 ab^{-1}	
	Parameter	Unit	3 TeV	10	TeV	14 TeV	
	L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20		40	
	N	1012	2.2	1.8		1.8	
	f _r	Hz	5	5		5	
	P_{beam}	MW	5.3	14.4 10 10.5		20	
	С	km	4.5			14	
		т	7			10.5	
	ε	MeV m	7.5	7	.5	7.5	
	σ _E / Ε	%	0.1	0	.1	0.1	
	σ	mm	5	1	.5	1.07	
	β	mm	5	1	.5	1.07	
	ε	μm	25	2	25	25	

3.0

μm

0.9

0.63

Key Challenges

Muon Ionization Colling

Ionization Cooling: a fast, unique technique proposed for muons

1. Muons pass through a low-Z material (e.g., liquid hydrogen)

- Causes energy loss via ionization in all directions (transverse + longitudinal)
- 2. Then, muons are reaccelerated using RF cavities
- Only the longitudinal momentum is restored
- 3. Net reduction in transverse momentum \Rightarrow reduced transverse emittance
- MICE demonstrated (10%) reduction of the transverse emittance of 140 MeV/c muons passing a cell

Emittance Development

Nature volume 578, 53-59 (2020)

Cooling is demonstrated by MICE; more particle at small amplitude

- Cavities with very high accelerating gradient in strong magnetic field
- Very strong solenoids (> 30 T) for the final cooling:
 - Luminosity is proportional to the field

Neutrino Flux Issue

> Particularly high in direction of the straights (interaction region)

- Typical legal limit 1 mSv/year
- MAP goal < 0.1 mSv/year
- LHC achieved < 5 μSv/year

Move collider ring components, e.g. vertical bending with 1% of main field at the 200m deep tunnel

Detector

Build a detector robust against beam induced backgrounds (BIB)

- In detector region, dominated by MeV-scale neutrals
- Not particularly in time, and not projective from collision point
- High precision timing measurements O(10-100) ps
- Good shielding at interaction points as well as detectors

Detector Challenges

- Major Challenge: High levels of Beam-Induced Background (BIB)
 - Unprecedented radiation environment due to muon decays
- > Requirements:
 - Excellent position & timing resolution (e.g., tracker ~10-30 ps, calorimeters ~10 ps aspirational)
 - High radiation hardness
 - Efficient data transmission & on-detector background rejection
 - Low mass, low power consumption
- > Detector Concepts (for 10 TeV):
 - MAIA (Muon Accelerator Instrumented Apparatus)
 - MUSIC (MUon System for Interesting Collisions)
 - Common Structure: All-silicon tracker, electromagnetic/hadron calorimeters, muon sub-detector, superconducting solenoid
- R&D Focus: Simulation & performance optimization, new technologies (ASICs, magnets), BIB mitigation strategies.

Particle production from single muon decay 25m away Nicely absorbed by nozzle

Now imagine ~<u>10M</u> of these decays...

$$E_{\text{decay}} = 13 \text{ EeV} \times \left(\frac{n_{\mu}/\text{bunch}}{2 \times 10^{12}}\right)$$

Images from Slides by <u>D. Calzolari</u>

0.0003% of BIB shown

Enormous contribution **into detector region** from glowing nozzles

> Neutrons Photons Electrons Positrons

Luckily total ionizing dose/year is comparable to HL-LHC And orders of magnitude less than FCC-hh

MAIA Detector Concept

Solenoid

Outer Tracker

Inn

TRI

Muon Detector

Table 2: Preliminary summary of the "baseline" and "aspirational" targets for selected key metrics for 10 TeV muon collider.

Requirement	Baseline	Aspirational	
Angular acceptance $\eta = -\log(\tan(\theta/2))$	$ \eta < 2.5$	$ \eta < 4$	
Minimum tracking distance [cm]	~ 3	< 3	
Forward muons ($\eta > 5$)	tag	$\sigma_p/p \sim 10\%$	
Track σ_{p_T}/p_T^2 [GeV ⁻¹]	4×10^{-5}	1×10^{-5}	
Photon energy resolution	$0.2/\sqrt{E}$	$0.1/\sqrt{E}$	
Neutral hadron energy resolution	$0.4/\sqrt{E}$	$0.2/\sqrt{E}$	
Timing resolution (tracker) [ps]	$\sim 30-60$	$\sim 10-30$	
Timing resolution (calorimeters) [ps]	100	10	
Timing resolution (muon system) [ps]	~ 50 for $ \eta > 2.5$	< 50 for $ \eta > 2.5$	
Flavour tagging	b vs c	b vs c, s-tagging	
Boosted hadronic resonance identification	h vs W/Z	W vs Z	

MAIA Detector

- Key feature of MAIA: Solenoid before calorimeters
 - 1.7m radius; 5T, 1T return
 - Allows for bigger calorimeters and high field
 - Before ECal: Reduces e/y precision
 - And shields the calos from BIB!
- > Tracker
 - 10 measurements in barrel
 - 30~60ps timing resolution

- Sensitive to photon BIB in first few layers
- Longitudinal segmentation is key to rejecting BIB

MUSIC Detector

> Designed for 3 TeV collider

hadronic calorimeter 60 layers of 19-mm steel absorber + plastic scintillating tiles; 30x30 mm² cell size: 7.5 λ₁. electromagnetic calorimeter 40 layers of 1.9-mm W absorber + silicon pad sensors: 5x5 mm² cell granularity; 22 X₀ + 1 λ₁. muon detectors 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke; 30x30 mm² cell size. superconducting solenoid (3.57T)

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.

Time R&D Plan

- > **Target Timeline :** First stage operational around 2050 (technically feasible).
 - Potential to be Europe's next flagship project if no Higgs factory realized at CERN.
- Proposed R&D Program (approx. 10 years):
 - Budget: Accelerator ~300 MCHF (materials) + ~1800 FTEy (personnel);
 Detectors ~20 MCHF + ~900 FTEy.

Fig. 5: Technically limited muon collider timeline.

A real muon collider

Muon collider interest comes in waves

- First proposed in connection with a neutrino factory at BNL or FNAL
- MAP program focused on a Higgs factory
- Now, shifted focus to multi-TeV collider with connections back to Higgs and neutrinos

One Muon Collider for two colliders

- Muon collider is a unique opportunity for a high energy lepton collider for multi-TeV scale new physics and precision measurements
- > 10 TeV muon collider is achievable
- Be smart, open-minded, and take advantage of new opportunities to achieve physics goals
- Realize seemingly impossible physics with technology, engineering, ingenuity

Backup Slides

Accelerator Challenges 1

Proton Driver:

- Designs based on existing facilities (5-10 GeV)
- Challenge: Heat/radiation load (2MW beam) on target
- Muon Cooling System:
 - Optimized design reduces 6D emittance (longitudinal emittance ~3x better than the target parameter, transmission 20% lower)
 - Challenges: Beam loading, heat load on hydrogen absorbers; integration & matching
- Acceleration System (Low & High Energy):
 - Solutions found for LINAC & 2nd RLA. High-energy acceleration simulations (wakefields, counter-rotating beams) show lattice exceeds transmission targets
 - Challenge: Emittance control with lattice errors
- > Collider Ring (10 TeV, β =1.5mm):*
 - Requires short bunch, large energy spread
 - Challenges: Chromatic aberration control (0.1% RMS momentum spread); energy acceptance (current lattice below target); magnet misalignments & neutrino flux dilution.

Accelerator Challenges 2

Magnet Systems:

- Conceptual designs for critical magnets: 20 T target solenoid, 40 T cooling solenoids, ±1.8T fast-pulsed accelerator magnets, high-field collider dipoles/quads (shielding).
- Challenge: Resource-loaded hardware development program (critical path).
- RF Systems:
 - 352/704 MHz normal conducting RF for cooling; 1.3 GHz for high-energy acceleration.
 - Challenges: Tight integration with solenoids (cooling RF), up to 32 MV/m field; power coupler interference.

Muon Cooling Demonstration Program:

- Integrated engineering design developed (based on typical cooling section).
- Candidate sites identified (CERN, Fermilab).
- Challenge: Resource-loaded timeline; on facility critical path.
- Site & Neutrino Considerations (CERN/Fermilab):
 - CERN: Reuse SPS/LHC tunnels possible, surface installations on CERN land.
 - Fermilab: Study underway for infrastructure reuse within site boundaries.
 - Challenge: Neutrino radiation management (dilution, surface detectors for FASERv-like program), environmental impact.

Accelerator Challenges & Key R&D

- > Overcoming Technical Hurdles (No showstoppers identified):
 - **Proton Driver:** High-intensity, short-pulse beam.
 - **Target System:** 2 MW beam power, managing heat & radiation (graphite target)
 - Muon Cooling System (Crucial!): Significant 6D emittance reduction; RF cavities in high magnetic fields; hydrogen absorbers
 - Acceleration System: High-efficiency, high-gradient acceleration; beam stability
 - Collider Ring: Short bunches, large energy spread control; magnet alignment; neutrino radiation management
 - Magnet Technology: High-field solenoids (HTS, ~40T), fast-ramping magnets, high-field dipoles (Nb₃Sn, HTS)
 - **RF System:** High-gradient RF cavities (e.g., 32 MV/m), power couplers
- Muon Cooling Demonstration Program Proposed: Integrated validation of key technologies (sites like CERN, Fermilab considered)
- > **Site Studies:** CERN (reusing SPS/LHC tunnels), Fermilab.
- > **Power Consumption:** ~188 MW for 10 TeV site , ~172 MW for CERN 7.6 TeV