

Hit Matching between the MTD and ME0 System for Muon Identification in the High-η Endcap region

<u>Dohun Gwon</u>, Jason Lee Department of Physics, The University of Seoul

Introduction

- In high-η endcap region(|η| > 2.4), there is no dedicated muon detector except ME0. Thus, we aim to associate hits from the MTD with those ME0 to improve muon identification in this region.
- Both the MTD and ME0 are new detector components to be implemented in CMS Phase-2 upgrade. As there is no real experimental data yet, we explore the feasibility of hit matching based on Geant4 simulation data in the high-η region.
- Hit matching between ME0 and MTD is expected to enhance muon identification efficiency and reduce the fake rate in highη region, where conventional muon tracking coverage is limited.

ME0 GEM Detector

- ME0 is designed to enhance muon reconstruction in HL-LHC environment, and address challenges such as aging hardware, reduced resolution, and efficiency loss in the forward region.
- ME0 coverage is $2.0 < |\eta| < 2.8$.
- 6-layer triple-GEM stack, and each stack covers an angular region of $\Delta \phi \approx 20^{\circ}$.
- In particular, the region 2.4 < $|\eta|$ < 2.8 extends muon acceptance beyond the current muon system's coverage.

MIP Timing Detector

 At the HL-LHC, each bunch crossing is expected to produce an average of 200 collisions, making it difficult to identify hard interaction and increasing the rate of false triggers.

Current Status

Goal

 \bigcirc Hit matching between MTD and ME0 using $\eta - \varphi$ coordinates.

• Determine whether the matched hits originate from the same muon

Dataset

:Simulation dataset generated using CMSSW, based on Pythia event generation and Geant4 detector simulation.

- Current Status
 - Simulated data has been generated
 - Currently analyzing MTD reconstructed hit position plots.
- Expected Challenges
- MTD is designed to address the challenges of the HL-LHC by providing precision timing and vertex information
- Thus, MTD enables the separation of overlap collisions, reduces the rate of false triggers and improves pileup rejection.

Endcap Timing Layer

- The MTD is a thin layer between the tracker and calorimeters, divided into barrel and endcap regions. (BTL for |η| < 1.5 and the ETL up to |η| ≈ 3.0)
- The Endcap Timing Layer (ETL) is composed of two double-sided LGAD disks, to cover
 1.6 < |η| < 3.0.
- LGAD is a fast-timing silicon sensor with internal gain, capable of precise timing measurements in the range of 30-50 ps.

- \bigcirc The MTD hit position resolution, and some muons fail to leave MTD hits across both
 - disks due to modules or structures placed between the disks.
- It is necessary to verify that the timing information from ME0 and MTD is at comparable scale.

Next Steps and Plan

- $\circ~$ Convert MTD hit positions to $\eta-\varphi$ coordinates and Compare them with ME0 hits positions.
- Implement matching algorithm between MTD and ME0 hits.
- Use additional information (e.g., timing, track direction) to determine if the matched hits are from same muon.

Summary

• This study focus on hit matching between MTD and ME0 in high- η region of the

• Also it can maintain its performance even under the radiation levels expected by end of HL-LHC operation.

CMS Phase-2 upgrade.

- MTD designed to separate pile up interactions at HL-LHC.
- The goal is to match MTD and ME0 hits based on η - ϕ coordinates and verify the

hits originate from the same muon using precise timing and position

information.

Reference

C. Collaboration, "Technical proposal for a mip timing detector in the cms experiment phase 2 upgrade," tech. rep., 2017.

The CMS Muon Endcap (ME0) GEM Detector - Tanvi Sheokand on behalf of the CMS collaboration

E-mail: kdohwn@naver.com Computational physics lab, University of Seoul Tel. 02-6490-5361