Deep Learning for the Level-1 ME0 Trigger in the CMS Experiment

Woohyeon Heo on behalf of the CMS Collaboration

Introduction

- In the phase-2 upgrade of CMS, ME0 will be installed at the endcap as a part of the muon system, covering 2.0 < $|\eta|$ < 2.8
- Each stack of ME0 consists of 6 layers of triple Gas Electron Multiplier chambers. 18 stacks will be installed each disk of CMS.
- Each chamber consists of 8 partitions along the η direction (i η) and 384 strips (374 for i η = 1) along the ϕ direction
- At the HL-LHC, there are average 200 pile-up collisions per bunch crossing. Since the ME0 is installed very close to the beamline, it is exposed to a high background rate.

Performance

Performance of ME0SF with 1, 2 and 3 layer Models

Sample

- For efficiency : 50,000 events, each containing 8 randomly generated muons with uniform $p_T=1-200$ GeV and $|\eta|=2.0-2.8$, along with an average of 200 additional pile-up collisions per bunch crossing (BX)
- For Minbias rate : 50,000 events, only pile-up collisions, with an average of 200 per BX

Matching rule :

- A segment is considered matched with a muon track if
- η position match : $|(η Partition)_{MuonTrack} (η Partition)_{segment}| ≤ 1$ Pad Strip position match : $|(PadStrip)_{MuonTrack} - (PadStrip)_{segment}| ≤ 5$

Due to the high background environment of ME0, it is important to trigger on the proper targets

ME0 Stub Finder

- The ME0 Stub Finder (ME0SF) is the Level-1 trigger algorithm for ME0
- In ME0SF, the raw hit data will be pre-processed forming "pad strip" and "virtual partition"
- Pad strip : combined strip of 2 adjacent strip, 384 strips \rightarrow 192 pad strips
- Virtual partition : jointed η partition of 2 adjacent η partition with a purpose of detecting a segment which passed 2 η partitions, 8 original + 7 virtual η partition
- It produces track segments (= trigger primitive) by scanning the ME0 hit map for track-like patterns
- The trigger primitive will be sent to the Endcap Muon Track Finder with 27 bits per segment (4 bits: η / 10 bits: ϕ / 9 bits: Bending Angle* / 4 bits: Quality)
- A segment must have hits in at least 4 layers ("Loose cuts") → more stringent cut is under investigation. We use alternative method of Deep Learning for it

Bending angle match : $|(Bending Angle)_{MuonTrack} - (Bending Angle)_{segment}| \le 0.4$

Muon Efficiency = $\frac{(\# \text{ of matched muon track})}{(\# \text{ of total muon track})}$

Minbias rate per chamber = $\frac{(\# \text{ of unmatched segment})}{(36 \text{ chambers}) \times (25 \text{ ns})} \times (Fill Factor**)$

** Fill Factor ≈ 0.7710 [3]

(must have hits in at least 4 layers)

Receiver Operating Characteristic Curve of Models

Overall Performance

	Loose cuts***	1 layer CNN	2 layers CNN	3 layers CNN
Muon Efficiency	99.19 %	98.70 %	99.04 %	99.21 %
Minbias rate per chamber	179.7 MHz	114.3 MHz	90.10 MHz	80.32 MHz
	*** Loose cuts: the standard ME0SF implementation with a minimal segment requirement			

Performance as function of p_T or η partition

- Output Data : (15, 192)
 - Segment strip position
 - **15 vectors corresponding to strip-wise segment position for 15 partition**
 - Each vector has 192 values, representing the likelihood (0 to 1) of a segment at each strip

Pad Strip (15, 6, 192)

- The ME0SF will only run on the strips specified by the model, while the standard algorithm scans all strips
- \rightarrow potentially reducing the processing time of ME0SF

0 5 10 15 20 25 30 35 40 45 p_{τ} (0

Summary

.......

........

CNN Models with different depth of 1, 2 and 3 are trained to filter the pile-up induced segments in ME0SF

- The models allow ME0SF to run only on strips specified by the model
 → Potential to decrease the processing time for ME0SF
- CNN Models effectively reduced the Minbias rate while preserving efficiency even for high η or low p_T

Reference

[1] CMS Collaboration. The Phase-2 Upgrade of the CMS Muon Detectors, Technical Design Report, CMS (2017). doi: 10.17181/CERN.5T9S.VPMI
 [2] Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU), CoRR (2018). doi: 10.48550/arXiv.1803.08375
 [3] P. Fessia and M. Zerlauth. "HL-LHC Parameter and Layout Baseline," Chamonix 2014: LHC Performance Workshop, pp. 198–201, (2015). doi: 10.5170/CERN-2015-002.19

KSHEP Spring meeting 22 May 2025 – 24 May 2025

Woohyeon Heo E-mail: <u>woohyeon.heo@cern.ch</u>