
Transformer-based Deep Regression Model for Estimating Missing
Transverse Momentum

Seungjin Yang

Kyung Hee University

November 28–30, 2024
KSHEP 2024 Fall

Missing Transverse Momentum

• Missing transverse momentum (MET) p⃗miss
T is defined as the

negative vector sum of the transverse momenta of all
reconstructed particle candidates in an event

p⃗miss
T = −

∑
i∈event

p⃗T,i

• MET serves as a proxy for invisible particles like neutrinos and
dark matter candidates

• Good MET reconstruction is important for the Standard Model
(SM) process studies involving neutrinos and dark matter searches

• Korea-CMS Machine Learning group aims to develp a deep
learning (DL) model that predicts MET!

• Kyung Hee U.: Junghwan Goh, Junwon Oh and Seungjin
Yang

• Kyungpook National U.: Chang-Seong Moon and Bongho
Tae

Figure: Source: Bo Liu, Missing Transverse

Momentum Measurement using the ATLAS

Detector

1

https://cds.cern.ch/record/1999514
https://cds.cern.ch/record/1999514
https://cds.cern.ch/record/1999514

Dataset

• Simulation of p-p collisions at 14 TeV
with an average of 200 pileup
interactions

• Dileptonic t̄t with up to two jets at LO
• MadGraph5_aMC@NLO + PYTHIA8

+ Delphes

2

Dataset

• Simulation of p-p collisions at 14 TeV
with an average of 200 pileup
interactions

• Dileptonic t̄t with up to two jets at LO
• MadGraph5_aMC@NLO + PYTHIA8

+ Delphes

3

PUPPI

• Pile-Up Per Particle Identification (PUPPI) is a
pileup mitigation method built on the CMS Particle
Flow (PF) and Charge Hadron Subtraction (CHS)
algorithms

• PUPPI gives weights to particles based on the
probability that they are originated from a leading
vertex (LV) or pileup (PU) vertices

• LV particles are likely to have more activity around
them than PU particles

• PUPPI MET is defined as a MET calculated from
PUPPI candidates

F
iα

-5 0 5 10 15

 fr
ac

tio
n

of
 p

ar
tic

le
s

0

0.05

0.1

0.15

charged LV
charged PU
neutrals LV
neutrals PU

)F
iα weight (

0 0.2 0.4 0.6 0.8 1

 fr
ac

tio
n

of
 p

ar
tic

le
s

-310

-210

-110

neutrals LV

neutrals PU

Figure: Source: D. Bertolini, et al. Pileup per
particle identification 4

DeepMET

• CMS has introduced a position-wise
feedforward-based MET regression
network, called DeepMET

• DeepMET takes in reconstructed
particles and then predicts offsets
and scales correcting particles’
transverse momenta

• While MET is an event-level
observable, DeepMET solely consists
of particle-wise operations, lacking the
ability to capture dependencies
between particles

Figure: Source: Y. Feng, A New Deep-Neural-Network–Based
Missing Transverse Momentum Estimator, and its Application to W Recoil.

5

Perceptron, Convolution and Attention

 h1

 h2

 h3

 ⋮

 hN

 x1

 x2

 x3

 ⋮

 xN

Element-wise

(a) Perceptron

h1

h2

h3

⋮

hN

x1

x2

x3

⋮

xN

Adjacent elements

(b) Convolution

h1

h2

h3

⋮

hN

x1

x2

x3

⋮

xN

All-to-all

(c) Attention

• In DL, an input data is represented as an array of vectors
• Perceptron acts on each element of the input, ignoring the arrangement of input elements → DeepMET
• Convolution computes the weighted sum of adjacent input elements with sliding filters, capturing local

patterns in the input data → needs to consider detector resolution and require very deep networks
• Attention assigns input-driven weights to input elements, enabling it to capture both local and global

patterns → Our approach! 6

Transformer

(a) A dialog with ChatGPT
(b) Sora: Creating video from
text

• A transformer is a DL architecture that uses self-attention mechanisms to process and generate
sequences, enabling efficient handling of long-range dependencies

• ChatGPT and Sora build on the transformer architecture

7

Transformer

Multi-Head
Self-Attention

inputs

Add & Norm

Add & Norm

Feed Forward

N×

Positional
Embedding

Input Embedding

Masked
Multi-Head

Self-Attention

Add & Norm

×N

Positional
Embedding

Add & Norm

Feed Forward

Multi-Head
Cross-Attention

Add & Norm

Linear

Softmax

Output
Probabilities

targets

Output Embedding

K V Q K V Q

K V Q

K V Q

Scaled Dot-Product Attention

Linear Linear Linear

Concatenate

Linear

Q K V

MatMul

Scale

Softmax

MatMul

Computational
and Memory
Complexity

Figure: Credit: Tay, Yi, et al. ”Efficient Transformers: A Survey.”

• A transformer is a DL architecture that uses self-attention mechanisms to process and generate
sequences, enabling efficient handling of long-range dependencies

• ChatGPT and Sora build on the transformer architecture

8

https://arxiv.org/abs/2009.06732

Quadratic Complexity of Attention

(a) Attention matrix
(b) A dialog with
ChatGPT

0 2500 5000 7500 10000 12500 15000
Multiplicity

0.00

0.02

0.04

0.06

0.08

AU

1e-2

PF (10.4k)
Neutral PF (6.6k)
Charged PF (3.8k)

(c) PF candidate
multiplicity (14 TeV,
PU200)

• An attention has O(n2) complexity
• To avoid out-of-memory, ChatGPT-4o has about 8k input token limit
• In the hash environment of 200 pileup, a DL model have to deal with an average of 10k particles!

9

Beyond Transformers

Performer
(Choromanski et al., 2020)

Linformer
(Wang et al., 2020b)

Linear
Transformer

(Katharopoulos et al., 2020)

Set Transformer
(Lee et al., 2019)

Transformer-XL
(Dai et al., 2019)

Memory
Compressed

(Liu et al., 2018)

ETC
(Ainslie et al., 2020)

Sparse Transformer
(Child et al., 2019)Image Transformer

(Parmar et al., 2018)

Synthesizer
(Tay et al., 2020a)

Longformer
(Beltagy et al., 2020)

Big Bird
(Zaheer et al., 2020)

Axial Transformer
(Ho et al., 2019)

Blockwise Transformer
(Qiu et al., 2019)

Sinkhorn
Transformer

(Tay et al., 2020b)

Reformer
(Kitaev et al., 2020)

Compressive
Transformer

(Rae et al., 2018)

Routing
Transformer

(Roy et al., 2020)Funnel
Transformer

(Dai et al., 2020)

Random Feature Attention
(Peng et al., 2021)

Long Short
Transformer

(Zhu et al., 2021)

Poolingformer
(Zhang et al., 2021)

Nystromformer
(Xiong et al., 2019)

Adaptive
Sparse

Transformer
(Correia et al., 2019)

Product Key
Memory

(Lample et al., 2019)

GShard
(Lepikhin et al., 2020)

Switch
Transformer

(Fedus et al., 2021)

TokenLearner
(Ryoo et al., 2021)Perceiver

(Jaegle et al., 2021)

Clusterformer
(Wang et al., 2020)

Scaling Transformer
(Jaszczur et al., 2021)

Low-Rank Transformer
(Winata et al., 2020)

Clustered Attention
(Vyas et al., 2020)

CC-Net
(Huang et al., 2018)

GLaM
(Du et al., 2021)

Swin
Transformer

(Liu et al., 2020)

Charformer
(Tay et al., 2021)

Figure: Source: Tay, Yi, et al. ”Efficient Transformers: A Survey.”

• Make it sparse, make it block-diagonal, make it small and so on...
10

https://arxiv.org/abs/2009.06732

Perceiver
Input
array

Latent
array

K

Q

Encode

Decode

Process

Output
query
array

Output
array

Q

x D
V

A
tt

en
ti

on

A
tt

en
ti

on

K V

A
tt

en
ti

on

Q

K V

Input
array

Latent
array

K

Q

Encode

Decode

Process

Output
query
array

Output
array

Q

x L

V

A
tt

en
ti

on

A
tt

en
ti

on

K V

A
tt

en
ti

on

Q K V

V

K

Q
Attention
scores

Input
array

Latent
array

K

Q

Encode

Decode

Process

Output
query
array

Output
array

Q

x D

V

A
tt

en
ti

on

A
tt

en
ti

on

K V

A
tt

en
ti

on

Q K V

V

K

Q
Attention
scores

M

C

D

N

O O

E

Figure: Source: DeepMind, Perceiver IO: A General Architecture for Structured Inputs & Outputs

• A Perceiver contains a cross-attention between an input array and a trainable
latent array

• The latent array with k latent vectors is assumed to be shorter than the input
array with N vectors

• The Perceiver consists of a single O(kN) attention and several O(k2) attentions
• The Perceiver achieves the state of the art resutls in many data domains 11

PerceiverMET

FFN

 N±

 N0

Charged particle array

Neutral particle array

Embedded input array

Latent array

Attention

 Q

 K

 V

 K

 V

 Q

FFN times repeatedNblocks

Mean FFN

 Nl

Predicted ⃗pmiss
T

Attention

• Charged particle: (px, py, η, IsRecoPU)
• IsRecoPU is a boolean bit indicating whether a particle is associated with a pileup

vertex or not
• Neutral particle: (px, py, η)
• A model with Nl = 128 and Nblocks = 4 is trained

12

Revisinting Target Variables

0 100 200 300 400
Generated pmiss

T [GeV]
0

1000

2000

3000

4000

5000

6000

Ev
en

ts

top 5%
158 GeV
total

(a) pmiss
T distribution

(b) Source: J. Kaplan, et
al. Scaling Laws for Neural
Language Models.

-3 -2 -1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

a.
u.

pmiss, GEN
T < 158 GeV

pmiss, GEN
T > 158 GeV

(c) New target variable
distribution

• There is huge imbalance in pmiss
T

• Unfortunately, the performance of the Transformer follows a power law, where the parameters, dataset
size and computations are considered as variables

• Change of target variables from (pmiss
x , pmiss

y) to

υ⃗∗ =
p⃗miss,GEN

T − p⃗miss,REC
T

pmiss,REC
T

= (υx, υy)

13

Evaluation Metrics: Bias and Resolution

• Residual: ∆O = OREC −OGEN

• O denotes a component of p⃗miss
T

• Bias: b[O] = E[∆O]

• Resolution: σ[O] := P84[∆O]−P16[∆O]
2

• Pk denotes k-th percentile 14

Results (1)

0 100 200 300 400
pmiss

T [GeV]
0.000

0.002

0.004

0.006

0.008

0.010AU Generated
Deep Learning
PUPPI
ParticleFlow (PF)

-200 -100 0 100 200
pmiss

T [GeV]
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

AU PF
PUPPI
Deep Learning

15

Results (2)

-10

0

10

20

30

40

50

60
pm

is
s

T
 b

ia
s,

 b
 [G

eV
]

Deep Learning
PUPPI
ParticleFlow (PF)

0 100 200 300 400
Generated pmiss

T [GeV]

-25

0

|b
|

|b
PF

|

20

30

40

50

60

pm
is

s
T

 re
so

lu
tio

n,

 [G
eV

]

Deep Learning
PUPPI
ParticleFlow (PF)

0 100 200 300 400
Generated pmiss

T [GeV]

-30

-20PF
16

Results (3)

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03
(p

m
is

s
T

) b
ia

s,
 b

 [r
ad

]
Deep Learning
PUPPI
ParticleFlow (PF)

0 100 200 300 400
Generated pmiss

T [GeV]

-0.025

0.000

|b
|

|b
PF

| 0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

(p
m

is
s

T
) r

es
ol

ut
io

n,

 [r
ad

]

Deep Learning
PUPPI
ParticleFlow (PF)

0 100 200 300 400
Generated pmiss

T [GeV]

-0.50

-0.25

PF
17

Summary

• We aim to develop a attention-mechanism-based MET reconstruction model
• We deploy the Perceiver architecture to incoporate about 10k particles into the

attention mechanism
• Perceiver shows smaller bias and resolution than the PUPPI MET
• We plan to refine network architectures and test various physics processes

including dark matter candidates

18

Thanks! :)

PUPPI

• Calculate a local shape variable α that quantifies how much of a
particle i is likely to have originated from parton shower-like
radiation (or leading vertex, LV) or pileup-like radiation (or pileup
vertices, PU)

αi = log
∑

j∈event

pj
T

∆Rij
×Θ(Rmin ≤ Rij ≤ R0)

• Estimate a distribution of αPU using charged particles associated
with pileup vertices

• Calculate signed χ2 for each neutral particle

χ2
i =

(αi − ᾱPU)|αi − ᾱPU|
RMS[αPU]

• Calculate weights for neutral particles: wi = Fχ2,NDF=1(χ
2
i)

• Update neutral particles’ momenta: pi → wi × pi

• Remove neutral particles with wi and pT,i less than thresholds

F
iα

-5 0 5 10 15

 fr
ac

tio
n

of
 p

ar
tic

le
s

0

0.05

0.1

0.15

charged LV
charged PU
neutrals LV
neutrals PU

)F
iα weight (

0 0.2 0.4 0.6 0.8 1

 fr
ac

tio
n

of
 p

ar
tic

le
s

-310

-210

-110

neutrals LV

neutrals PU

Scaled Dot-Product Attention (0)

Matrix
Multiplication

Scale

Matrix
Multiplication

KQ V

E

H

SoftMax

A

E’

• An array of vectors can be represented as a matrix

X =

x⃗1

x⃗2

x⃗3

• An attention function takes three matrices K, V and Q
as input and produces a single matrix. In general, K and
V are originated from the same matrix X

H = Attention(K,V,Q)

= Attention(ϕK(X), ϕV(X),Q)

• A self-attention is a special case of attention, where Q
is also came from X

Scaled Dot-Product Attention (1)

Matrix
Multiplication

Scale

Matrix
Multiplication

KQ V

H

SoftMax

A

E’

E

E = QKT

=

q⃗1
q⃗2
q⃗3

 [⃗
k1 k⃗2 k⃗3

]

=

q⃗1 · k⃗1 q⃗1 · k⃗2 q⃗1 · k⃗3
q⃗2 · k⃗1 q⃗2 · k⃗2 q⃗2 · k⃗3
q⃗3 · k⃗1 q⃗3 · k⃗2 q⃗3 · k⃗3

 .

Scaled Dot-Product Attention (2)

Matrix
Multiplication

Scale

Matrix
Multiplication

KQ V

E

H

SoftMax

A

E’

E = QKT

=

q⃗1
q⃗2
q⃗3

 [⃗
k1 k⃗2 k⃗3

]

=

q⃗1 · k⃗1 q⃗1 · k⃗2 q⃗1 · k⃗3
q⃗2 · k⃗1 q⃗2 · k⃗2 q⃗2 · k⃗3
q⃗3 · k⃗1 q⃗3 · k⃗2 q⃗3 · k⃗3

 .

E′ =
1√

dim(⃗k)
E.

Scaled Dot-Product Attention (3)

Matrix
Multiplication

Scale

Matrix
Multiplication

KQ V

E

H

SoftMax

A

E’
A =

eE′11
Z1

eE′12
Z1

eE′13
Z1

eE′21
Z2

eE′22
Z2

eE′23
Z2

eE′31
Z3

eE′32
Z3

eE′33
Z3

 ,

where Zj =
∑

j eE′
ij .

Scaled Dot-Product Attention (4)

Matrix
Multiplication

Scale

Matrix
Multiplication

KQ V

E

H

SoftMax

A

E’ H =

A11 A12 A13
A21 A22 A23
A31 A32 A33

v⃗1

v⃗2
v⃗3

=

∑

i A1i⃗vi∑
i A2i⃗vi∑
i A3i⃗vi

 .

	Appendix

