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Missing Transverse Momentum

Missing transverse momentum (MET) BT is defined as the
negative vector sum of the transverse momenta of all
reconstructed particle candidates in an event
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i€event

MET serves as a proxy for invisible particles like neutrinos and
dark matter candidates

Good MET reconstruction is important for the Standard Model
(SM) process studies involving neutrinos and dark matter searches
Korea-CMS Machine Learning group aims to develp a deep
learning (DL) model that predicts MET!

= Kyung Hee U.: Junghwan Goh, Junwon Oh and Seungjin
Yang

= Kyungpook National U.: Chang-Seong Moon and Bongho
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= Pile-Up Per Particle Identification (PUPPI) is a
pileup mitigation method built on the CMS Particle
Flow (PF) and Charge Hadron Subtraction (CHS)

algorithms

PUPPI gives weights to particles based on the
probability that they are originated from a leading
vertex (LV) or pileup (PU) vertices

= LV particles are likely to have more activity around

them than PU particles

PUPPI MET is defined as a MET calculated from

PUPPI candidates
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DeepMET

= CMS has introduced a position-wise
feedforward-based MET regression
network, called DeepMET

= DeepMET takes in reconstructed

211

particles and then predicts offsets
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transverse momenta

= While MET is an event-level .
Flgure: Source: Y. Feng, A New Deep-Neural-Network—Based
ObserVa ble, DeepM ET SOlely ConSiStS Missing Transverse Momentum Estimator, and its Application to W Recoil.
of particle-wise operations, lacking the
ability to capture dependencies
between particles



Perceptron, Convolution and Attention

All-to-all
Element-wise

(a) Perceptron (b) Convolution (c) Attention

= In DL, an input data is represented as an array of vectors

= Perceptron acts on each element of the input, ignoring the arrangement of input elements — DeepMET

= Convolution computes the weighted sum of adjacent input elements with sliding filters, capturing local
patterns in the input data — needs to consider detector resolution and require very deep networks

= Attention assigns input-driven weights to input elements, enabling it to capture both local and global
patterns — Our approach! 6



Transformer
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(b) Sora: Creating video from
(a) A dialog with ChatGPT text

= A transformer is a DL architecture that uses self-attention mechanisms to process and generate
sequences, enabling efficient handling of long-range dependencies

= ChatGPT and Sora build on the transformer architecture
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Figure: Credit: Tay, Yi, et al. "Efficient Transformers: A Survey.”

= A transformer is a DL architecture that uses self-attention mechanisms to process and generate
sequences, enabling efficient handling of long-range dependencies
= ChatGPT and Sora build on the transformer architecture


https://arxiv.org/abs/2009.06732

Quadratic Complexity of Attention

ChatGPT [
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Delicious response.
(b) A dialog with
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= An attention has O(n?) complexity
= To avoid out-of-memory, ChatGPT-40 has about 8k input token limit
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= In the hash environment of 200 pileup, a DL model have to deal with an average of 10k particles!



Beyond Transformers
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= Make it sparse, make it block-diagonal, make it small and so on... 10


https://arxiv.org/abs/2009.06732
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Figure: Source: DeepMind, Perceiver 10: A General Architecture for Structured Inputs & Outputs

A Perceiver contains a cross-attention between an input array and a trainable

latent array

= The latent array with k latent vectors is assumed to be shorter than the input
array with N vectors

= The Perceiver consists of a single O(kN) attention and several O(k?) attentions

= The Perceiver achieves the state of the art resutls in many data domains 11



PerceiverMET
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» Charged particle: (px, py, 7, IsRecoPU)
= |sRecoPU is a boolean bit indicating whether a particle is associated with a pileup
vertex or not
= Neutral particle: (py, py, 1)

= A model with N; =128 and Npjocks = 4 is trained 1



Revisinting Target Variables
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= There is huge imbalance in p’;‘_iss
= Unfortunately, the performance of the Transformer follows a power law, where the parameters, dataset
size and computations are considered as variables
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Evaluation Metrics: Bias and Resolution
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= Residual: AQ = OREC _ OGEN

= O denotes a component of pss
= Bias: b[O] = E[AO]
= Resolution: ¢[0] := w

14
= P, denotes k-th percentile



Results (1)
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Results (2)
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Results (3)
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= We aim to develop a attention-mechanism-based MET reconstruction model

= We deploy the Perceiver architecture to incoporate about 10k particles into the
attention mechanism

= Perceiver shows smaller bias and resolution than the PUPPI MET

= We plan to refine network architectures and test various physics processes
including dark matter candidates

18



Thanks! :)



PUPPI

= Calculate a local shape variable « that quantifies how much of a
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Scaled Dot-Product Attention (0)

T e An array of vectors can be represented as a matrix
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e A self-attention is a special case of attention, where Q

is also came from X



Scaled Dot-Product Attention (1)
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Scaled Dot-Product Attention (2)
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Scaled Dot-Product Attention (3)
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Scaled Dot-Product Attention (4)
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