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Missing Transverse Momentum

• Missing transverse momentum (MET) p⃗miss
T is defined as the

negative vector sum of the transverse momenta of all
reconstructed particle candidates in an event

p⃗miss
T = −

∑
i∈event

p⃗T,i

• MET serves as a proxy for invisible particles like neutrinos and
dark matter candidates

• Good MET reconstruction is important for the Standard Model
(SM) process studies involving neutrinos and dark matter searches

• Korea-CMS Machine Learning group aims to develp a deep
learning (DL) model that predicts MET!

• Kyung Hee U.: Junghwan Goh, Junwon Oh and Seungjin
Yang

• Kyungpook National U.: Chang-Seong Moon and Bongho
Tae

Figure: Source: Bo Liu, Missing Transverse

Momentum Measurement using the ATLAS

Detector
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Dataset

• Simulation of p-p collisions at 14 TeV
with an average of 200 pileup
interactions

• Dileptonic t̄t with up to two jets at LO
• MadGraph5_aMC@NLO + PYTHIA8

+ Delphes
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PUPPI

• Pile-Up Per Particle Identification (PUPPI) is a
pileup mitigation method built on the CMS Particle
Flow (PF) and Charge Hadron Subtraction (CHS)
algorithms

• PUPPI gives weights to particles based on the
probability that they are originated from a leading
vertex (LV) or pileup (PU) vertices

• LV particles are likely to have more activity around
them than PU particles

• PUPPI MET is defined as a MET calculated from
PUPPI candidates
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Figure: Source: D. Bertolini, et al. Pileup per
particle identification 4



DeepMET

• CMS has introduced a position-wise
feedforward-based MET regression
network, called DeepMET

• DeepMET takes in reconstructed
particles and then predicts offsets
and scales correcting particles’
transverse momenta

• While MET is an event-level
observable, DeepMET solely consists
of particle-wise operations, lacking the
ability to capture dependencies
between particles

Figure: Source: Y. Feng, A New Deep-Neural-Network–Based
Missing Transverse Momentum Estimator, and its Application to W Recoil.
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Perceptron, Convolution and Attention
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(c) Attention

• In DL, an input data is represented as an array of vectors
• Perceptron acts on each element of the input, ignoring the arrangement of input elements → DeepMET
• Convolution computes the weighted sum of adjacent input elements with sliding filters, capturing local

patterns in the input data → needs to consider detector resolution and require very deep networks
• Attention assigns input-driven weights to input elements, enabling it to capture both local and global

patterns → Our approach! 6



Transformer

(a) A dialog with ChatGPT
(b) Sora: Creating video from
text

• A transformer is a DL architecture that uses self-attention mechanisms to process and generate
sequences, enabling efficient handling of long-range dependencies

• ChatGPT and Sora build on the transformer architecture
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Figure: Credit: Tay, Yi, et al. ”Efficient Transformers: A Survey.”

• A transformer is a DL architecture that uses self-attention mechanisms to process and generate
sequences, enabling efficient handling of long-range dependencies

• ChatGPT and Sora build on the transformer architecture
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Quadratic Complexity of Attention

(a) Attention matrix
(b) A dialog with
ChatGPT
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• An attention has O(n2) complexity
• To avoid out-of-memory, ChatGPT-4o has about 8k input token limit
• In the hash environment of 200 pileup, a DL model have to deal with an average of 10k particles!
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Figure: Source: Tay, Yi, et al. ”Efficient Transformers: A Survey.”

• Make it sparse, make it block-diagonal, make it small and so on...
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Perceiver
Input
array

Latent 
array

K

Q

Encode

Decode

Process

Output
query 
array

Output 
array

Q

x D
V

A
tt

en
ti

on

A
tt

en
ti

on

K V

A
tt

en
ti

on

Q

K V

Input
array

Latent 
array

K

Q

Encode

Decode

Process

Output
query 
array

Output 
array

Q

x L

V

A
tt

en
ti

on

A
tt

en
ti

on

K V

A
tt

en
ti

on

Q K V

V

K

Q
Attention 
scores

Input
array

Latent 
array

K

Q

Encode

Decode

Process

Output
query 
array

Output 
array

Q

x D

V

A
tt

en
ti

on

A
tt

en
ti

on

K V

A
tt

en
ti

on

Q K V

V

K

Q
Attention 
scores

M

C

D

N

O O

E

Figure: Source: DeepMind, Perceiver IO: A General Architecture for Structured Inputs & Outputs

• A Perceiver contains a cross-attention between an input array and a trainable
latent array

• The latent array with k latent vectors is assumed to be shorter than the input
array with N vectors

• The Perceiver consists of a single O(kN) attention and several O(k2) attentions
• The Perceiver achieves the state of the art resutls in many data domains 11



PerceiverMET
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• Charged particle: (px, py, η, IsRecoPU)
• IsRecoPU is a boolean bit indicating whether a particle is associated with a pileup

vertex or not
• Neutral particle: (px, py, η)
• A model with Nl = 128 and Nblocks = 4 is trained
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Revisinting Target Variables
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• There is huge imbalance in pmiss
T

• Unfortunately, the performance of the Transformer follows a power law, where the parameters, dataset
size and computations are considered as variables

• Change of target variables from (pmiss
x , pmiss

y ) to

υ⃗∗ =
p⃗miss,GEN

T − p⃗miss,REC
T

pmiss,REC
T

= (υx, υy)
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Evaluation Metrics: Bias and Resolution

• Residual: ∆O = OREC −OGEN

• O denotes a component of p⃗miss
T

• Bias: b[O] = E[∆O]

• Resolution: σ[O] := P84[∆O]−P16[∆O]
2

• Pk denotes k-th percentile 14



Results (1)
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Results (2)
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Results (3)
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Summary

• We aim to develop a attention-mechanism-based MET reconstruction model
• We deploy the Perceiver architecture to incoporate about 10k particles into the

attention mechanism
• Perceiver shows smaller bias and resolution than the PUPPI MET
• We plan to refine network architectures and test various physics processes

including dark matter candidates
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Thanks! :)



PUPPI

• Calculate a local shape variable α that quantifies how much of a
particle i is likely to have originated from parton shower-like
radiation (or leading vertex, LV) or pileup-like radiation (or pileup
vertices, PU)

αi = log
∑

j∈event

pj
T

∆Rij
×Θ(Rmin ≤ Rij ≤ R0)

• Estimate a distribution of αPU using charged particles associated
with pileup vertices

• Calculate signed χ2 for each neutral particle

χ2
i =

(αi − ᾱPU)|αi − ᾱPU|
RMS[αPU]

• Calculate weights for neutral particles: wi = Fχ2,NDF=1(χ
2
i )

• Update neutral particles’ momenta: pi → wi × pi

• Remove neutral particles with wi and pT,i less than thresholds
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Scaled Dot-Product Attention (0)

Matrix
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Matrix
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• An array of vectors can be represented as a matrix

X =

x⃗1

x⃗2

x⃗3


• An attention function takes three matrices K, V and Q
as input and produces a single matrix. In general, K and
V are originated from the same matrix X

H = Attention(K,V,Q)

= Attention(ϕK(X), ϕV(X),Q)

• A self-attention is a special case of attention, where Q
is also came from X



Scaled Dot-Product Attention (1)

Matrix
Multiplication

Scale

Matrix
Multiplication

KQ V

H

SoftMax

A

E’

E

E = QKT

=

q⃗1
q⃗2
q⃗3

 [⃗
k1 k⃗2 k⃗3

]

=

q⃗1 · k⃗1 q⃗1 · k⃗2 q⃗1 · k⃗3
q⃗2 · k⃗1 q⃗2 · k⃗2 q⃗2 · k⃗3
q⃗3 · k⃗1 q⃗3 · k⃗2 q⃗3 · k⃗3

 .



Scaled Dot-Product Attention (2)
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Scaled Dot-Product Attention (3)
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Scaled Dot-Product Attention (4)
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