ME0 Segment Reconstruction using Deep Leaning

HEO WooHyeon, KIM Yeonju, LEE Jason Sang Hun, PARK Inkyu, WATSON lan James **Department of Physics, University of Seoul**

Motivation and Goal

Motivation

- CERN is planning to increase the luminosity of the Large Hadron Collider (LHC), leading to the High-Luminosity LHC (HL-LHC)
- The higher the pileup interactions, the more difficult it becomes to reconstruct physics objects like muons
- There are many efforts to develop and improve reconstruction algorithms like TrackML challenge to address these difficulties

Goal

Investigates the use of deep learning techniques to improve local muon reconstruction

Dataset

- Muon gun simulation
 - Number of generated events: 50k
 - Eight muons per event
 - $10 < p_T < 50$ [GeV] ullet
 - $2.0 < |\eta| < 2.8$
 - The average pileup of 200

Select superchambers with one or no

- within the ME0 detector
- We aim to enhance reconstruction accuracy and efficiency in the face of high background particle rates

	LHC		HL-LHC	
	Nominal	Run3	Run 4	Run 5
Inst. lumi. [Hz/nb]	10	20	50	75
Average pileup	20	50-60	150	200

ME0 Station

- Based on Gas Electron Multiplier (GEM) technology, a forthcoming component of the CMS experiment
- High pseudorapidity coverage
- $(2.0 < |\eta| < 2.8)$
- Each region has 18 superchambers, each of which has 6 layers
- Every layer contains 8 eta partitions, with the largest eta partition having 374 strips

Deep Learning based Reconstruction

• The input and output are 3-dim images with the same shape as superchamber's geometry

Data processing

muons

Using Rechit

- Input features:
 - fired or not / bx / cluster size
- Target:
 - whether each rechit is a muon hit or not
- Model Architecture
 - Based on convolution neural network (CNN)
 - Residual connection
- Training
 - Loss: Cross Entropy
 - Positive weight on hits fired by muons
 - Optimizer: AdamW
- Postprocessing
 - predicted muon hits are
- Rechit
 - Predicted muon hi Target

and the others having 384 strips

reconstructed into one or more segments using a simple clustering algorithm

Muon Local Reconstruction

When a muon passes through the multi-layer detector, it leaves a track inside the detector, which is called a segment.

The muon local reconstruction process builds segments, which are used as input for the seed/track reconstruction.

There are two ways to build segments. The pattern matching is used in hardware based L1 trigger. The Road Usage algorithm^[2] is for **offline reconstruction**.

Pattern Matching

1. Scan with predefined patterns

Baseline

Road Usage Algorithm

. Hit reconstruction

Results

	Deep Learning (DL)	Road Usage (RU)
Efficiency	0.9922	0.9939
Fake rate	0.0620	0.7373

Muon-segment matching criteria

Definition

[1] CMS Collaboration, The Phase-2 Upgrade of the CMS Muon Detectors. 9 2017. [2] CMS Collaboration, Local reconstruction algorithms in the cathode strip chambers of CMS. Technical report, CERN, Geneva, 2019

Summary and Plan

We have developed deep learning based muon local reconstruction method The deep learning based method significantly reduces fake rate compare to Road Usage, while showing **comparable efficiency** in high-pileup environments We're planning to add a head to an existing model, using it as the backbone, to replace the role of postprocessing

2024 KSHEP Fall Meeting November 28 - November 30, 2024