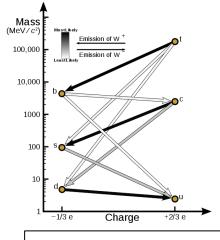


Study for measuring |V _{ts} | directly in dileptonic final state of top pair production at 13 TeV with the CMS detector

<u>JANG Woojin,</u> LEE Jason , PARK Inkyu, ROH Youn Jung, WATSON Ian James

> University of Seoul 2024 KSHEP Fall meeting

Introduction

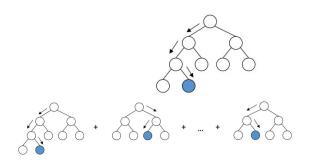


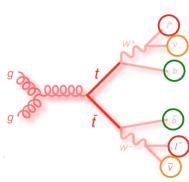
- Quark mixing is described by the CKM matrix
 - 3 X 3 complex matrix including information on charged weak interaction
 - Unitarity is assumed in the Standard Model (SM) but it can be broken in the Beyond Standard Model (BSM) paradigm [1]
 - \circ $|V_{ts}|$ is one of the elements of the matrix
 - The square of the component gives a branching ratio of $t \rightarrow sW$ decay

$$|V_{ts}|^2 = \frac{BR(t \to s)}{BR(t \to q)}$$

- The goal of the analysis is to measure $|V_{ts}|$ directly
 - Test the SM and constrain the BSM models
 - Set a upper limits on the rare top decay process not yet been observed
- Current reported value based on global fit, taken from PDG [2]
 - $|V_{ts}| = 0.04110 \text{ and } |V_{tb}| = 0.99912$

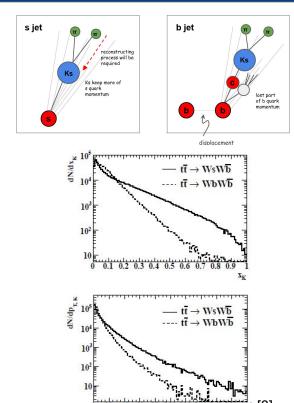
 $V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$



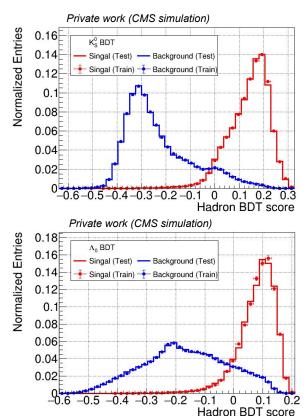

Charged current weak interaction between generations

Analysis Strategy

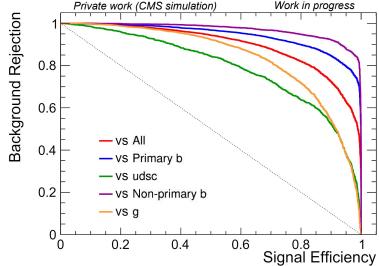
- Dilepton final state of top pair production
 - Less jet diversity than other channels
 - $\circ \quad \ \ Still \ \ dominant \ background \ from \ t{\rightarrow} bW$
 - $= |V_{tb}|^2 / |V_{ts}|^2 \sim 0.6 \times 10^3$
 - Other backgrounds from non-top process
- Removing jet backgrounds is a major challenge
 - It is important to improve performance of discrimination of strange jet from top decays
 - We use the Boosted Decision Trees (BDT) as a jet discriminator
 - Extraction of |V_{ts}| is performed by binned likelihood fit on model taken from jet discrimination output



Information for Jet BDT Discriminator


- Jet information such as jet kinematics, jet shape
- Event topology such as lepton, p_T^{miss} for t→q / non t→q separation
- In addition, strange hadron information
 - Strange mesons such as K^0_{S} and Λ_0 can be produced from t→bW as well as t→sW
 - $\circ \Rightarrow$ Difference in several properties be like
 - Larger energy fraction hadron takes in s jet than in b jet
 - More charged leptons from B hadron decay in b jet
 - Different jet cone size, s jet narrower and b jet wider

Hadron Reconstruction


- All possible pairs of charged tracks in inner tracker
 - Opposite charge + assuming charged pion mass
 - Quality criteria are applied on pairs
- For excluding fake hadrons, hadron BDT is trained
 - \circ Sample : tt \rightarrow sWbW and tt \rightarrow bWbW samples
 - Generated by MadGraph5_aMC@NLO and showering by Pythia8
 - Training variables
 - Basic hadron kinematics (p_T , η , ϕ)
 - Hadron vertex and track information
 - Hadron daughter track information (such as p_T , σ_{IP} , and χ^2)
 - Choose a hadron with ΔR (jet, hadron) < 0.4 and the highest BDT score satisfying greater than a working point

Jet BDT Discriminator

- Jets from top decays (Primary jets)
 - Jets with $\Delta R(\text{jet}, t \rightarrow q) < 0.4$ and the highest p_T among ΔR matched jets
- BDT-based signal jet discriminator
 - The same sample as the hadron BDT
 - Signal definition: Primary s jet with a real hadron
 - Background definition: All other jets with a real hadron
 - Training variables
 - Jet information
 - + DeepJet [4] b-tagging discriminant
 - Event-wise information
 - Hadron and its daughter variables
- In an event, one jet with the highest score is selected

Dataset and Event Selection

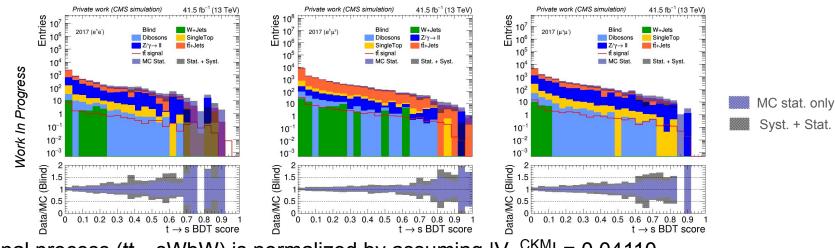
- CMS data collected during Run 2 period (2016-2018) in pp collisions at 13 TeV and corresponding simulation samples are studied
 - Dilepton channels (ee, $e\mu$, and $\mu\mu$) of top pair production are used in the analysis 0
 - tt→sWbW / tt→bWbW / single top (tW, t-channel, s-channel) / W+Jets / Drell-Yan jets / Diboson (WW, WZ, ZZ) 0
- Most of selection criteria used in CMS top analysis [5] are applied in this work

	ID	р _т	ŋ	Isolation / Clustering
Muon	Tight	> 25(20)* GeV	< 2.4	Tight (ΔR = 0.4)
Electron	Tight	> 25(20)* GeV	1.44 < η 1.56 < η < 2.4	Tight (ΔR = 0.3)
Jet	Tight	> 30 GeV	< 2.4	Anti- k_T ($\Delta R = 0.4$)
b-Jet	b-tagging from CMS DeepJet medium working point			

Object selection

- * indicates leading(sub-leading) lepton
- Electron (muon) ID efficiency ~70 (95)%
- Jet ID efficiency > 98%

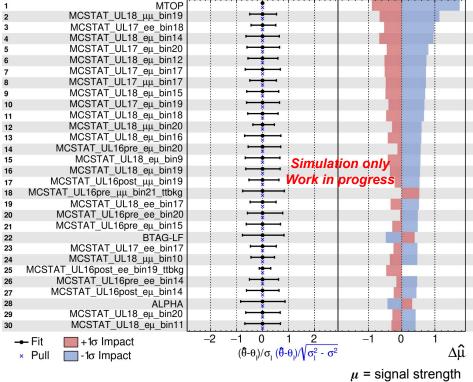
pp collisions at sqrt(s)= 13 TeV". JHEP 07. (2020): 125.

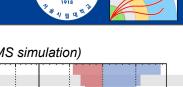

DeepJet medium working point \Rightarrow b-tagging efficiency ~80% while mis-identification rate ~1%

Event selection

Description				
Well reconstructed events with good primary vertex and triggers				
Exactly one opposite charged lepton pair with $M_{\parallel} > 20 \text{ GeV}$				
Veto Z-boson in <i>ee</i> and $\mu\mu$ channel ($ M_{\mu} - M_{z} < 15$ GeV)				
$p_T^{miss} > 40 \text{ GeV}$ in <i>ee</i> and $\mu\mu$ channel				
The number of selected jets ≥ 2				
The number of selected b-tagged jets ≤ 1				
Discrimination of signal jet				

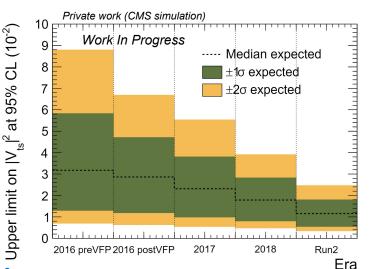
Jet BDT Score Distribution




- Signal process (tt \rightarrow sWbW) is normalized by assuming $|V_{ts}^{CKM}| = 0.04110$
- Uncertainties
 - MC statistical error
 - Uncertainty from Drell-Yan background estimation
 - Systematics (Work in progress)
 - Experimental uncertainties
 - Luminosity, L1 prefiring, pile-up, trigger efficiency, lepton corrections and etc.
 - And theoretical uncertainties
 - Parton shower, underlying-event tune, QCD scales at matrix-level and etc.

Simulation Results

- Run 2 (138 fb⁻¹) with currently implemented uncertainties
 - The final jet BDT score distribution as a model PDF and we perform binned likelihood fits
 - A-priori expected significance excluding $|V_{ts}| = 0$ from the Asimov dataset assuming $V_{ts} = 0.04110$
 - ~0.6*o*
 - Need to improve some systematics fits → WIP
 - Pull & Impacts (WIP)
 - In order of nuisance impact (Right)
 - Large impact by MC sample size (MTOP, MC stats., and etc.)



Simulation Results

- Run 2 (138 fb⁻¹) with currently implemented uncertainties
 - The final jet BDT score distribution as a model PDF and we perform binned likelihood fits
- Expected upper limits on $|V_{ts}|^2$ (WIP)
 - Median, $\pm 1\sigma$, and $\pm 2\sigma$ expected limits for background-only hypothesis.

Expected upper limit on $|V_{ts}|^2$

Year	Median expected (×10 ⁻²)	$\pm 1\sigma$ expected (×10 ⁻²)	$\pm 2\sigma$ expected (×10 ⁻²)
2016 preVFP	< 3.18	< [1.30 , 5.83]	< [0.69, 8.80]
2016 postVFP	< 2.86	< [1.19, 4.71]	< [0.63, 6.69]
2017	< 2.31	< [0.99, 3.81]	< [0.54, 5.54]
2018	< 1.79	< [0.80, 2.83]	< [0.47, 3.91]
Combined (Run2)	< 1.15	< [0.54, 1.80]	< [0.34, 2.47]

Summary and Plans

- This analysis aims to measure $|V_{ts}|$ directly
 - Its result will give testing on the SM and constraints on the BSM
 - Good discrimination of signal jet (s jet from top decays) is required
 - Currently, the BDT-based s-jet discriminator is developed
 - with jet, hadron properties and event topology information
 - There is also ongoing study for a deep learning based jet discriminator
- Analysis is performed on ttbar dilepton final state in pp collisions at 13 TeV with CMS
 - Applied object and event reconstructions used in CMS top analysis
 - The expected result using MC only is extracted using the CMS Run 2 samples
- Plan
 - Improving the discrimination and data-driven s-jet tagging efficiency scale factors across all years will be applied
 - Adding more systematics, improving implemented ones

Thank you for your attention