# Deep Learning Application to the Analysis of Rare Top Decay t->sW at the LHC

<u>Jeewon Heo</u><sup>1</sup>, Woojin Jang<sup>1</sup>, Jason Lee<sup>1</sup>, Inkyu Park<sup>1</sup>, Youn Jung Roh<sup>1</sup>, Ian James Watson<sup>1</sup>, Seungjin Yang<sup>1,2</sup> <sup>1</sup> University of Seoul, <sup>2</sup> Kyung Hee University



### Introduction

- The Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the flavorchanging charged weak interaction
- Identification of a strange jet originating from top quark decays (t $\rightarrow$ sW) is an important task to achieve a direct measurement of |V<sub>ts</sub>| [1, 2]
- We propose a novel deep learning model based on the Self-Attention mechanism to find the jets decaying from the t $\rightarrow$ sW decay in the top pair production with dilepton final state

## Model Training

- For the training  $t\bar{t} \rightarrow sWbW$ (signal) and  $t\bar{t} \rightarrow bWbW$  (background) are used
  - $\circ$  Targets for signal sample, t $\rightarrow$ s parton matched events are used
- The task of the SAJA-Dilepton model is a jet-wise classification of events
  - The task is specified by using jet-wise cross-entropy loss
- Training variables
  - Jet: Momentum components, particle multiplicities, jet shape, energy sharing variable [4], b tagging information, jet charge
  - lepton: momentum components, flavor, charge
  - $\circ p_T^{miss}$ , azimuthal angle  $\phi$  of  $p_T^{miss}$
  - $\circ$  Jet constituents: Momentum components of particle, a difference of  $\eta$  and  $\phi$  between particle and jet axis,  $p_T$  of particle relative to jet  $p_T$ ,  $p_T$  perpendicular to jet axis,  $p_T$ perpendicular to jet axis, impact parameter value, charge, EM, hadronic energy

# Analysis Setup

- Sample generation
- Our signal process is  $t\bar{t} \rightarrow sWbW$ , where both
  - W bosons decay into leptons (e,  $\mu$ )
- Our dominant background process is  $tt \rightarrow bWbW$ , we also produce **Drell-Yan+jj**, **Single Top**, and **diboson** processes
- Samples are generated using MadGraph5\_aMC@NLO and PYTHIA 8, followed by simulating the CMS-like detector response with Delphes 3
- Selection for Top pair production with dilepton final state events

| Electron                                         | • Muon                                  | • Jet                         |
|--------------------------------------------------|-----------------------------------------|-------------------------------|
| ○ p <sub>T</sub> ≥ 25(20)*                       | ○ p <sub>T</sub> ≥ 25(20)*              | ○ p <sub>T</sub> ≥ 30         |
| ○ $ \eta  \le$ 1.442, 1.566 $\le  \eta  \le$ 2.4 | <ul> <li> η  ≤ 2.4</li> </ul>           | <ul> <li> η  ≤ 2.4</li> </ul> |
| <ul> <li>Isolation &gt; 0.12</li> </ul>          | <ul> <li>Isolation &gt; 0.15</li> </ul> | ○ Δ R (j, l) > 0.4            |

Event selection

- \* leading / sub-leading lepton
- $\circ$  Two leptons with opposite charge, M<sub>II</sub> > 20 GeV
- Veto Z boson ( $|M_z M_{\parallel}| > 15$  GeV),  $p_T^{miss} > 40$  GeV in (ee /  $\mu\mu$ ) channel
- At least 2 jets, Number of b-tagged jets < 2

 $\begin{bmatrix} L \\ L^{(2)} \\ p_{\mathrm{T}}^{\mathrm{miss}} \end{bmatrix}$ 

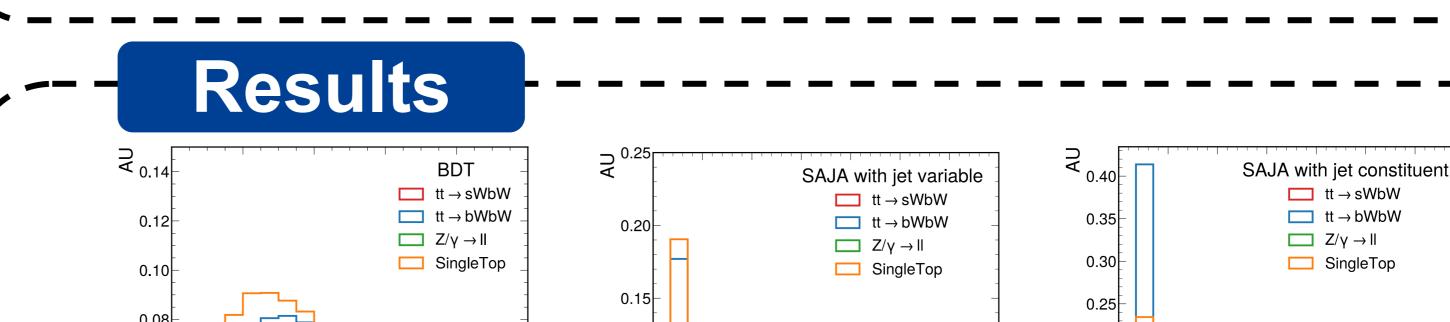
A simple diagram of model input and output structure for an event

 $\left. \right\} \to \text{Model} \to \begin{pmatrix} y_{t \to s}^{(1)} & y_{t \to b}^{(1)} & y_{other}^{(1)} \\ \vdots & \vdots & \vdots \\ y_{t \to s}^{(N)} & y_{t \to b}^{(N)} & y_{other}^{(N)} \end{pmatrix} \quad L(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_{t \to s}^{(j)} \log \hat{y}_{t \to s}^{(j)} + y_{t \to b}^{(j)} \log \hat{y}_{t \to b}^{(j)} + y_{other}^{(j)} \log \hat{y}_{other}^{(j)})$ 

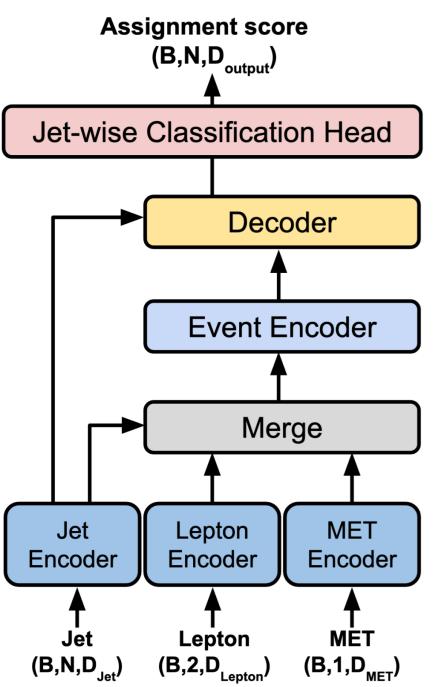
Jet-wise cross-entropy loss

# Baseline

- Boosted Decision Trees (BDT) model is used as a baseline
- For the implementation of BDT, the XGBoost library is used
- BDT is trained to classify jets from  $t \rightarrow sW$  decay jet-wisely
- Jet variables listed in training of SAJA-Dilepton model are used



#### **SAJA-Dilepton Model**



- We modified the Self-Attention for Jet Assignment (SAJA) model [3] for dilepton events
- Object encoder blocks deal with multi-modal inputs
- Information of objects that are sent to the same latent space are combined in the merge block
- The event encoder takes the output of the merge block and calculates their relationship using a selfattention mechanism
- The decoder block receives the output of the event encoder and jet encoder and derives the role of jets in events

Jet-wise classification head outputs categorical scores for jets in events

- Jet properties can be derived from jet constituent
  - We can calculate known properties such as number of particles in jet, jet shape, and fragmentation function of jet
  - These high-level features don't capture all information from the constituent
- We propose a model that can take jet constituents
  - The graph on the right can replace jet encoder of

Add & Norm

Feed-Forward

Add & Norm

Multi-head

Attention

Add & Norm

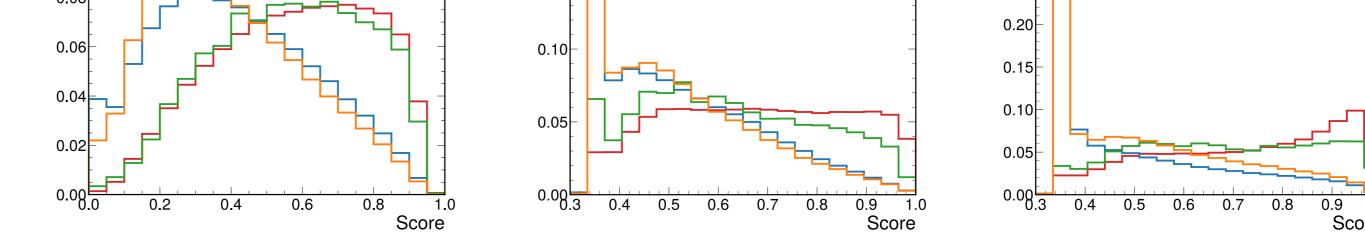
Multi-head

Self-Attention

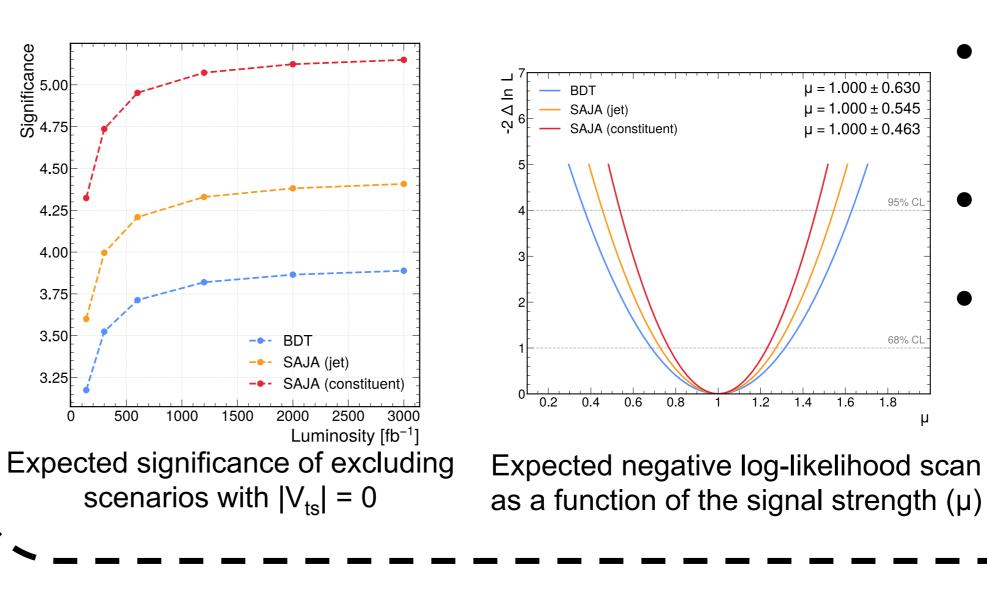
Target

-Source

Aggregate Jet Constituent Encoder Merge Tower Track Encoder Encoder



- We use  $t \rightarrow s$  score of models to discriminate signal and backgrounds
- Score distribution is used as input to the binned likelihood fit
- Expected limits and significances are calculated with a toy dataset (Asimov)
- Only MC statistics error is considered as a systematic



- **Expected significances are** obtained from Run 2 to HL-LHC luminosities with lumi projection **Expected limits are calculated with Run 2 luminosity**
- We obtained expected limits of 0.0221 < |V<sub>ts</sub>| < 0.0601 @ 95% CL with SAJA-Dilepton using jet constituent model

#### the SAJA-Dilepton model

Add & Norm

Feed-Forward

Add & Norm

Multi-head

Self-Attention

Input



- Left: Feed-forward block
- Object encoders are feedforward block
- Middle: Self-Attention block
- The event encoder and jet constituent encoder are selfattention block
- **Right: Decoder block**
- In the self-attention block
- and Decoder block,
- **Dropout is employed for** the output of each sublayer

Conclusion

- We introduced the models using self-attention mechanism that can apply to various types of input objects
- We compared SAJA-Dilepton models with the baseline model and SAJA-**Dilepton models show better performance**
- In this study, we can exclude scenarios with  $|V_{ts}| = 0$  up to a significance

level of ~4.25  $\sigma$  at the LHC Run 2 luminosity, considering MC statistics only

### Reference

[1] Ahmed Ali, Fernando Barreiro, and Theodota Lagouri. Prospects of measuring the CKM matrix element |Vts| at the LHC. Phys. Lett. B, 693:44– 51, 2010.

[2] Woojin Jang, Jason Sang Hun Lee, Inkyu Park, and Ian James Watson. Measuring |Vts| directly using strange-quark tagging at the LHC. J. Korean Phys. Soc., 81(5):377-385, 2022.

[3] Jason Sang Hun Lee, Inkyu Park, Ian James Watson, and Seungjin Yang. Zero-Permutation Jet-Parton Assignment using a Self-Attention Network. J. Korean Pays. Soc., 10.1007/s40042-024-01037-3, 2024.

[4] CMS. Performance of quark/gluon discrimination in 8 TeV pp data. Technical report, CERN, 2013.

Jeewon Heo E-mail: jeewon.heo@cern.ch



LeakyReLU

Linear

Dropout

LeakyReLU

Linear

Input

