

•

## **Dynamical Friction on Circular Orbit in Self-Interacting Ultra-Light Dark Matter and Fornax Globular Clusters**

Hyeonmo Koo<sup>1</sup>, Jae-Weon Lee<sup>2</sup>

<sup>1</sup>Department of Physics, University of Seoul, Seoul 02504, KOREA <sup>2</sup>Department of Electrical and Electronic Engineering, Jungwon University



Considering the self-interaction of bosonic scalar Ultra-Light Dark Matter (ULDM) relaxes the constraints on its particle mass, typically estimated to be around  $\sim 10^{-22} \text{eV}$ . We calculate the dynamical friction (DF) coefficient for a steady-state circular orbit induced by the gravitational wake of ULDM using multipole expansion. In the strong self-coupling regime, the leading-order term for the Mach number, only arising in the dipole term (l = 1), closely matches the full-order calculation. Applying these findings to the Fornax dwarf spheroidal galaxy (dSph) and its globular clusters (GCs), and assuming a DM halo density profile in the Thomas-Fermi limit, we provide a plausible explanation for the extended lifetime of Fornax GCs. Furthermore, considering self-interaction can reduce the DF force, and further increases their lifetime.



## **Application to Fornax dSph & GCs**

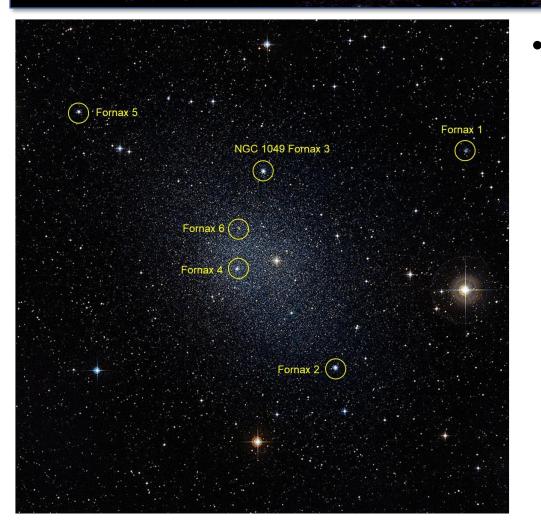
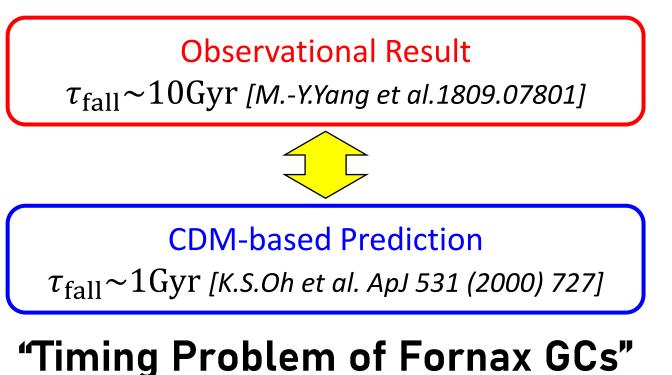


Figure 3 Digitized Sky Survey 2 image of Fornax dwarf spheroidal galaxy and its globular clusters.

The observed globular clusters (GCs) orbiting around Fornax dwarf spheroidal (dSph) have individual "Lifetime".

$$\tau_{\text{fall}} = \frac{M_{\text{P}} v_{\text{P}}}{F_{\text{DF}}} = \frac{v_{\text{P}}^3}{4\pi\rho G^2 M_{\text{P}} C_{\text{DF}}}$$



$$S = S_{EH} + S_{\phi} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g}R + \int d^{4}x \sqrt{-g} \left[ -\frac{1}{2}g^{\mu\nu}(\partial_{\mu}\phi)(\partial_{\nu}\phi) - \frac{1}{2}m_{a}^{2}\phi^{2} - \frac{\lambda}{4}\phi^{4} \right]$$

$$\int ds^{2} = -(1+2\Phi)dt^{2} + (1-2\Phi)\delta_{ij}dx^{i}dx^{j}}{\phi(\vec{x},t)e^{-im_{a}c^{i}t/h} + c.c.} \right]$$
Gross-Pitaevskii-Poisson (GPP) System
$$\begin{cases} -\frac{\hbar^{2}}{2m_{a}}\nabla^{2}\psi + m_{a}\Phi_{0}\psi + \frac{\hbar^{3}\lambda}{2m_{a}^{2}c}|\psi|^{2}\psi = i\hbar\frac{\partial\psi}{\partial t}}{\nabla^{2}\Phi_{0} = 4\pi Gm_{a}|\psi|^{2}}$$
• Madelung formalism
$$\begin{cases} \psi(\vec{x},t) = \sqrt{\rho(\vec{x},t)/m_{a}}e^{i\theta(\vec{x},t)} \\ \vec{v}(\vec{x},t) = (\hbar/m_{a})\nabla\theta(\vec{x},t) \end{cases}$$
introduces two pressure terms on Self-Interacting Pressure  $P = \frac{\lambda\hbar^{3}}{4m_{a}^{4}c}\rho^{2}$ 

$$\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho\vec{v}) = 0, \quad \frac{\partial\vec{v}}{\partial t} + (\vec{v}\cdot\nabla)\vec{v} + \nabla\Phi + \frac{1}{\rho}\frac{\nabla P}{\nabla P} + \nabla Q = 0, \\ Quantum Pressure Q = -\frac{\hbar^{2}}{2m_{a}^{2}}\frac{\nabla^{2}\sqrt{\rho}}{\sqrt{\rho}} \end{cases}$$
• Linear density perturbation  $\alpha(\vec{x},t) \equiv \rho(\vec{x},t)\bar{\rho} - 1$  by perturber's potential  $\Phi_{P}(\vec{x},t)$  is represented by Green function method.
$$\alpha(\vec{x},t) = \int \frac{d^{3}\vec{x}}{(2\pi)^{3}}\frac{d\omega}{2\pi}\frac{\exp\left[i\left(\vec{k}\cdot\vec{R}-\omega\tau\right)\right]}{\hbar^{2}k^{4}} + c^{2}k^{2} = \omega^{2}$$

[S.D.Tremaine, ApJ 203 (1976) 345]

| Object                              | dSph | GC1  | GC2  | GC3  | GC4  | GC5  |
|-------------------------------------|------|------|------|------|------|------|
| $M_P \left[ 10^5 M_{\odot} \right]$ | 1420 | 0.37 | 1.82 | 3.63 | 1.32 | 1.78 |
| $R_P$ [kpc]                         | -    | 1.6  | 1.05 | 0.43 | 0.24 | 1.43 |

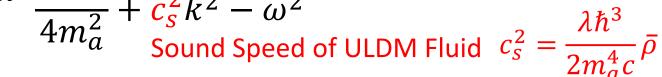
Table 1 Data for the Fornax system: mass and radial distance of GCs. [D.R.Cole et al. 1205.6327]

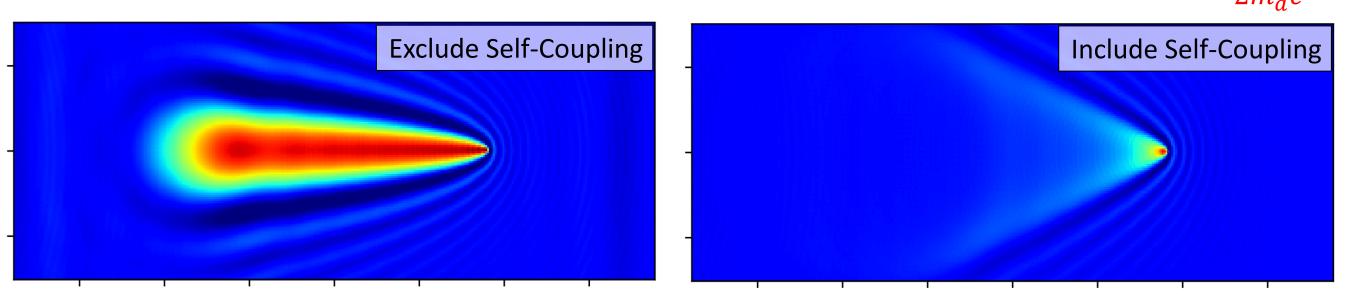
Thomas-Fermi (TF) limit, neglecting quantum pressure for fluid eq. is used for modeling DM halo of Fornax dSph.

 $\rho(r) = \frac{\pi M_{\text{halo}}}{4R_{\text{TF}}^3} \frac{\sin(\pi r/R_{\text{TF}})}{(\pi r/R_{\text{TF}})} \Rightarrow R_{\text{TF}} = \sqrt{\frac{\pi \hbar^3 \lambda}{8Gm_a^4 c}}$ Scaling relation of fluid eq.  $\Rightarrow$  TF-limit is valid in  $R_{\text{TF}} \gg R_Q \equiv \frac{\hbar^2}{GM_{\text{halo}}m_a^2}$ .  $\lambda \gg 1.513 \times 10^{-92} \left( \frac{1.42 \times 10^8 M_{\odot}}{M_{\text{halo}}} \right)^2$ [P-H.Chavanis 1103.2050]  $m_a = 1.0 \times 10^{-22} \text{eV}/c^2$  $m_a = 3.0 \times 10^{-22} \text{eV}/c^2$ 2.02.0 - $\lambda = 10^{-88}$  $\lambda = 10^{-88}$  $\lambda = 10^{-89}$  $\lambda = 10^{-89}$ 1.5 $\lambda = 10^{-90}$  $\lambda = 10^{-90}$  $c_s$  $=10^{-91}$  $\lambda = 10^{-91}$ v/ $=10^{-92}$ Z 0.50.50.00.80.20.80.60.00.20.00.40.60.41.01.0 $r \, [\mathrm{kpc}]$  $r \; [\mathrm{kpc}]$ 

**Figure 4** The Mach number  $\mathcal{M}$  as a function of the radial distance r. For sufficiently large  $\lambda$  and small  $m_a$ ,  $\mathcal{M} < 1$  is satisfied at r corresponding to the radial distance of GC3/4 from dSph.

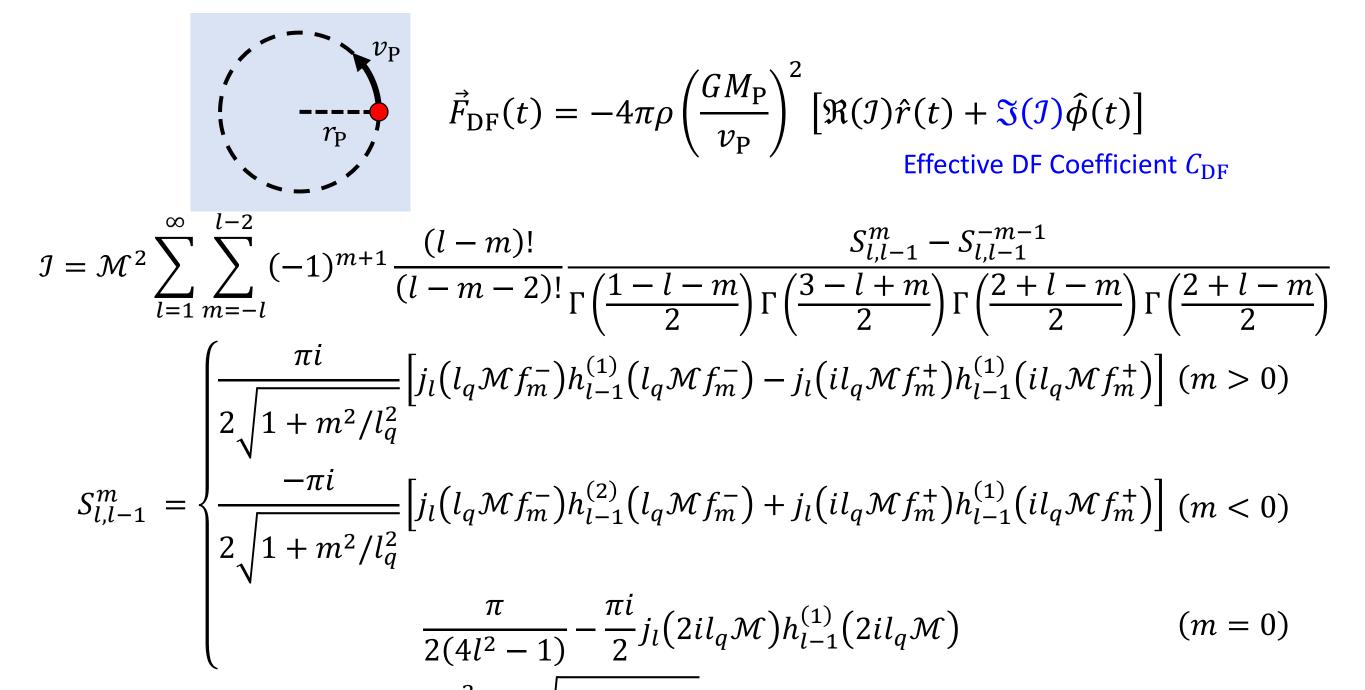
**Parameter Space** 

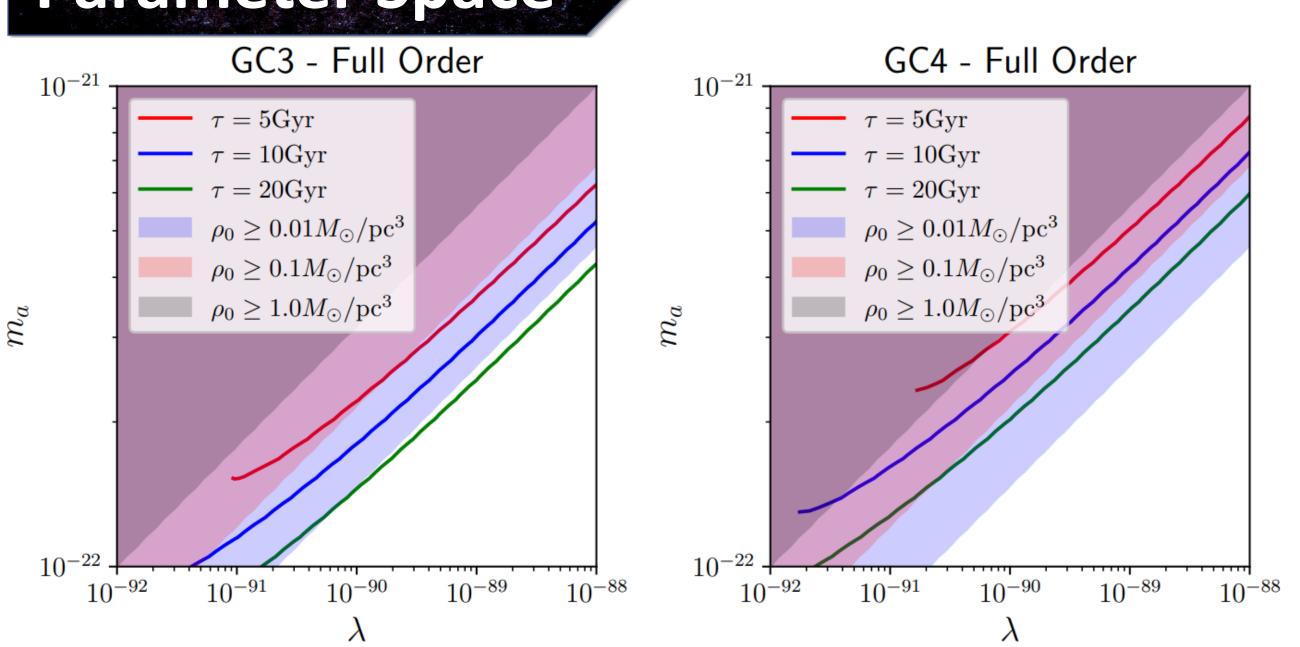




**Figure 1** Density perturbation  $\alpha(\vec{x}, t)$  woken by linear motion of point particle  $\vec{x}_{\rm P}(t) = (v_0 t)\hat{x}$  is numerically simulated by using pseudo-spectral method. [N.Glennon et al. 2312.07684]

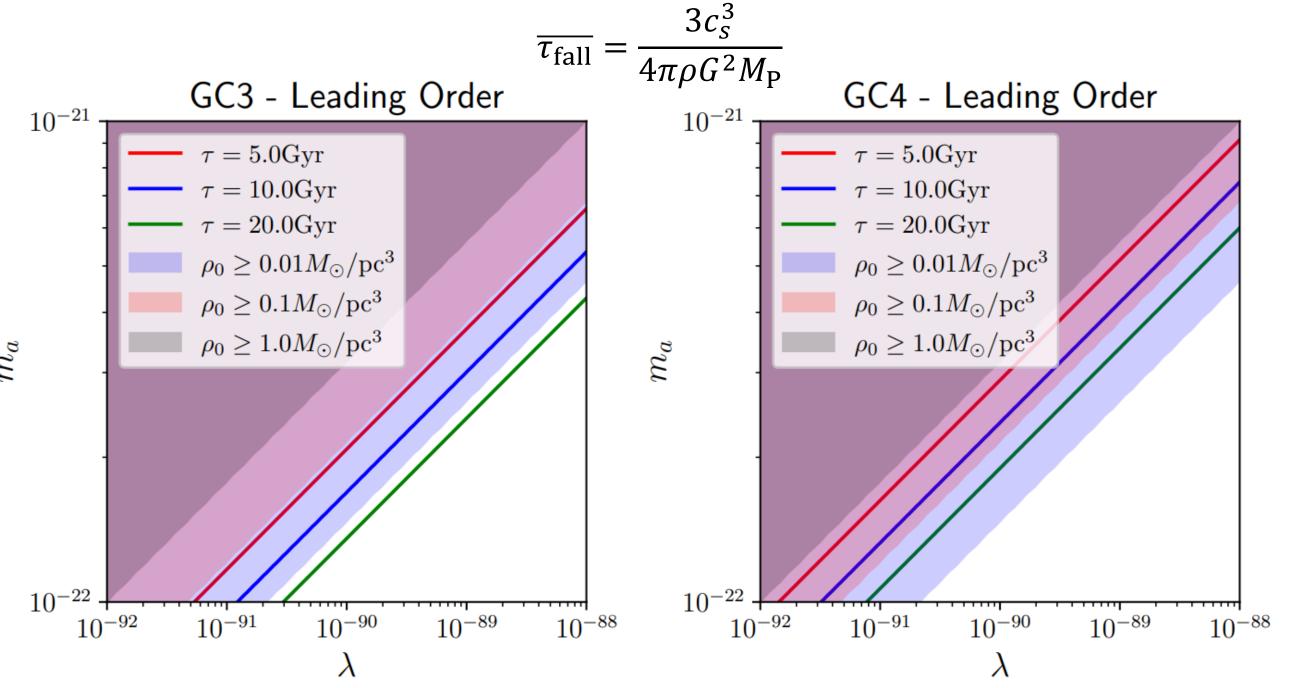
• For circularly moving point particle inside ULDM fluid with Mach number  $\mathcal{M} = v_{\rm P}/c_s$ , the dynamical friction (DF) force  $\vec{F}_{\rm DF}(t) = \bar{\rho} \int d^3 \vec{x} (\nabla \Phi_{\rm P}) \alpha(\vec{x}, t)$  is given by





**Figure 5** Parameter space in ULDM particle mass  $m_a$  vs self-coupling constant  $\lambda$  for various lifetimes  $\tau_{\text{fall}}$  of GC3/4 and DM halo central density  $\rho_0$  of TF-limit-profile Fornax dSph. Maximum multipole  $l_{\text{max}} = 20$  is used.

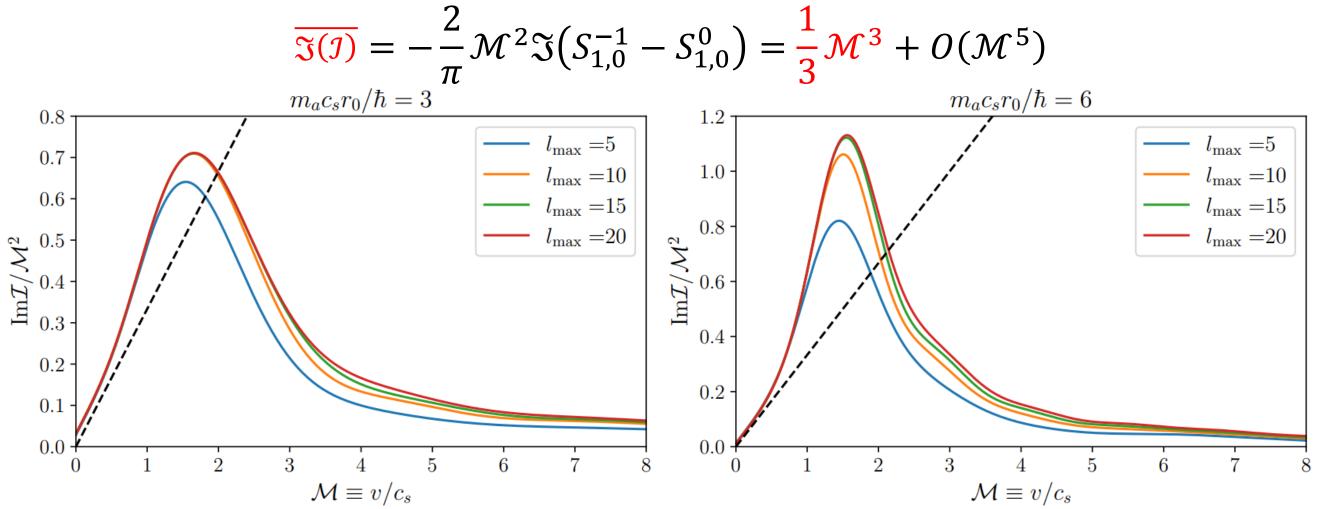
• Instead of  $\Im(\mathcal{I})$ , leading-order DF coefficient  $\Im(\mathcal{I})$  is useful for  $\mathcal{M} < 1$  to simply calculate the lifetime.



## where $l_q \mathcal{M} = m_a c_s r_P / \hbar$ and $f_m^{\pm 2} = 2 \sqrt{1 + m^2 / l_q^2 \pm 2}$ . [V.M.Gorkavenko et al. 2408.00104]

## Leading-Order Approximation

The leading-order term of DF coefficient only appears in l = 1.



**Figure 2** DF coefficient divided by square of Mach number,  $\Im(\mathcal{I})/\mathcal{M}^2$  for maximum multipole  $l_{\text{max}} =$  $5 \sim 20$  and  $m_a c_s r_P / \hbar$ . Dashed black line represents the leading-order approximation of  $\overline{\mathfrak{I}(\mathcal{I})} / \mathcal{M}^2 \cong \frac{1}{2} \mathcal{M}$ , which is only valid in the "subsonic" regime  $\mathcal{M} < 1$ .

**Figure 6** Parameter space of leading-order approximated lifetimes  $\overline{\tau_{fall}}$ . These results match well with the calculation of  $\Im(\mathcal{I})$  with  $l_{\text{max}} = 20$  for  $\lambda \ge 10^{-90}$ .

• Assuming the Fornax dSph central density has a range of  $10^{-2} \le \rho_0 |M_{\odot}/\text{pc}^3| \le 10^{-1}$ ,  $m_a$  and  $\lambda$  are simultaneously constrained as:

$$4.680 \,\mathrm{eV} < \frac{m_a}{\lambda^{1/4}} < 6.869 \,\mathrm{eV}$$

| Object | CDM  | ULDM, SI X | ULDM, SI O  |
|--------|------|------------|-------------|
| GC3    | 0.62 | 2.2        | 4.27~15.23  |
| GC4    | 0.37 | 10         | 13.06~42.79 |

**Table 2** Lifetimes[Gyr] of GC3/4 for CDM, ULDM without/with self-interaction. Left two columns are taken from [L.Hui et al. 1610.08297] with  $m_a = 3 \times 10^{-22}$  eV. From above constrain,  $\lambda$  has a range of  $[3.638 \times 10^{-90}, 1.689 \times 10^{-89}]$ , so that determines  $\overline{\tau_{\text{fall}}}$  at the last column.

Considering self-interaction in ULDM could extend lifetimes of Fornax GCs predicted by CDM, much more than ULDM without self-interaction.