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Abstract

Application to Fornax dSph & GCs

K o £ * The observed globular clusters (GCs) orbiting

Considering the self-interaction of bosonic scalar Ultra-Light Dark Matter ,
around Fornax dwarf spheroidal (dSph) have

(ULDM) relaxes the constraints on its particle mass, typically estimated to be el e arout ar ¢
around ~1072%2eV. We calculate the dynamical friction (DF) coefficient for a L L R individual “Lifetime”.
steady-state circular orbit induced by the gravitational wake of ULDM using ew e R e e D _ Mpvp V3
multipole expansion. In the strong self-coupling regime, the leading-order Tfall = For  4mpG2MpCpp
term for the Mach number, only arising in the dipole term (Il =1), closely
matches the full-order calculation. Applying these findings to the Fornax
dwarf spheroidal galaxy (dSph) and its globular clusters (GCs), and assuming G B R
a DM halo density profile in the Thomas-Fermi limit, we provide a plausible 0
explanation for the extended lifetime of Fornax GCs. Furthermore, considering T e g e
self-interaction can reduce the DF force, and further increases their lifetime.

Observational Result
Tra~10Gyr [M.-Y.Yang et al.1809.07801]

it

CDM-based Prediction
Trann~1Gyr [K.S.Oh et al. ApJ 531 (2000) 727]

Figure 3 Digitized Sky Survey 2 image of
Fornax dwarf spheroidal galaxy and its

globular clusters. “Timing Problem of Fornax GCs”

Self-Interacting ULDM
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* Linear density perturbation a(x,t) = p(x,t)p — 1 by perturber’s potential ®p(X,t) is | N

represented by Green function method. 0- . o === . . | |
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o Figure 4 The Mach number M as a function of the radial distance r. For sufficiently large A and small m,
(_) ) d3k dw €XP [i (k - R — wr)] M < 1is satisfied at r corresponding to the radial distance of GC3/4 from dSph.
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Figure 1 Density perturbation a(x, t) woken by linear motion of point particle xp(t) = (vyt)X is numerically /
simulated by using pseudo-spectral method. [N.Glennon et al. 2312.07684]
* For circularly moving point particle inside ULDM fluid with Mach number M = vp /cq,
the dynamical friction (DF) force Fpp(t) = p [ d3%(Vdp)a(%, t) is given by
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\ ™, DF - P Up ~ Figure 5 Parameter space in ULDM particle mass m, vs self-coupling constant A for various lifetimes t¢, of
S - 7 Effective DF Coefficient Cpr GC3/4 and DM halo central density p, of TF-limit-profile Fornax dSph. Maximum multipole I, = 20 is used.
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where [, M = m,csrp/h and fan = 2\/1 + mz/lczl + 2. [V.M.Gorkavenko et al. 2408.00104]
Leading-Order Approximation
’ —22 —22
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3(7) T \5(51,0 SLO) 3 T 0( ) Figure 6 Parameter space of leading-order approximated lifetimes T¢, . These results match well with the
maCsto/h =3 MaCsTo/N = 6 calculation of J(7) with [, = 20 for A = 1079,
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» Assuming the Fornax dSph central density has a range of 1072 < py|Mg/pc3| < 1071,
m, and A are simultaneously constrained as:

ma
4.680eV < -7 < 6.869¢V
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“* Considering self-interaction in

0.2 ~ e e
| GCs 0.62 2.2 4.27715.23 ULDM could extend lifetimes
1 2 3 1 5 & 1 s 133 15§ 1 s GC4 0.37 10 13.06~42.79 of Fornax GCs predicted by
. N M E v/es ] -M = v/es | Table 2 Lifetimes[Gyr] of GC3/4 for CDM, ULDM without/with CDM, much more than ULDM
Figure 2 DF coefficient divided by square of Mach number, J(J7) /M for maximum multipole [;,,x = self-interaction. Left two columns are taken from [L.Hui et al. without self-interaction.
5~20 and m,c,1p/h. Dashed black line represents the leading-order approximation of J(7) /M ? = %M, 1610.08297] with m, = 3 X 107%%eV. From above constrain,

A has a range of [3.638 x 107°°2,1.689 x 10787], so that

which is only valid in the “subsonic” regime M < 1.
determines Tgy at the last column.
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