Einstein Telescope: A 3rd Generation Gravitational Wave Detector

2024. 11. 30.

이성호

목차

CONTENTS

Ground-based GW Detectors

Einstein Telescope

10

3

Korean Group in ET

16

Einstein Telescope: A 3rd Generation Gravitational Wave Detector

Ground-based GW Detectors

 \bigcirc

Т

www.kasi.re.kr

Gravitational Wave Spectrum

Ground-based GW Detectors

Ground-based GW Detectors – DRFPMI

Ground-based GW Detectors – DRFPMI + SQZ

Ground-based GW Detectors – DRFPMI + SQZ + FC

2nd Generation GW Detectors

Updated 2024-07-11	— 01	02	— O3		— O4		— O5
LIGO	80 Мрс	100 Мрс	100-140 Мрс		<i>150</i> -160+ Мрс		240-325 Mpc
Virgo		30 Мрс	40-50 Мрс		50-80 Mpc		See text
KAGRA			0.7 Мрс	N	1-3 ≃10 Ирс Мрс		25-128 Mpc
2002127-v26 2	I I 015 2016	I I 2017 2018 2	019 2020 2021	2022 2023	l 2024 2025	1 1 2026 2027	1 I I 2028 2029 2030

3rd Generation GW Detectors

Einstein Telescope

Cosmic Explorer

• Optical Design and Straylight mitigation discussed so far

Cosmic Explorer

Cosmic Explorer

What are the steps for Cosmic Explorer? (Dawn V 2019)

Horizon planning (3G Design NSF award in 2018) Cosmic Explorer White Paper (3G Design award product)	3 years (2021)	CEHS (2021)
Community endorses the WP (through Dawn meeting?)	½ year (2021)	Dawn VI (2021)
NRC report based on CE WP and GWIC reports	1 ½ years? (2023)	Bypassed
MPSAC subcommittee reviews NRC report Physics Division develops a written plan for MPS approval NSF Director decides to authorize CD funding	½ year (2024)	ngGW (2024) In the works In the works
Conceptual Design period	2-3 years (2027)	Support started
Preliminary Design period award	2-3 years (2030)	
NSF approves submission to NSB	½ year (2030)	
Final Design period NSB prioritization OMB/Congress budget negotiations	2-3 years (2032)	
Congress appropriates MREFC funding (2032-37)	14 years (2032)	

Credit: P. Marronetti (NSF gravity program director)

Einstein Telescope: A 3rd Generation Gravitational Wave Detector

Π Einstein Telescope

 \bigcirc

www.kasi.re.kr

Einstein Telescope – Concept

Einstein Telescope – Design

Einstein Telescope – Design

Einstein Telescope – Design Trades

Einstein Telescope – Δ vs. 2L

ournal of Cosmology and Astroparticle Physics

Science with the Einstein Telescope: a comparison of different designs

- Triangle 10-km arms (1 site)
- 2L 15-km arms at 45° (2 sites)

Einstein Telescope – Science

Detection horizon for black-hole binaries

Einstein Telescope – Science Impacts

Einstein Telescope – Milestone

검색

Presentazione della candidatura italiana per Einstein Telescope

Palazzo Chigi 구독자 20.6만명

🗥 334 🖓 📣 공유 🛓 오프라인저장 ☲+ 저장 …

Q

조회수 9.3천회 스트리밍 시간: 1개월 전 INAF - ISTITUTO NAZIONALE DI ASTROFISICA - OSSERVATORIO AST<u>RONOMICO DI ROMA</u>

Roma, 06/06/2023 - Il Presidente del Consiglio, Giorgia Meloni, interviene alla presentazione della candidatura italiana per Einstein Telescope, la futura grande infrastruttura di ricerca per la rivelazione delle onde gravitazionali. L'evento si tiene nella sede dell'INAF Istituto Nazionale di Astrofisica. https://www.governo.it/it/articolo/pr... 더보기

Credit: L. Naticchioni

Einstein Telescope – Collaboration

Einstein Telescope – Collaboration

Einstein Telescope – Timeline

ET-PATHFINDER

- New facility for testing ET-LF technology in a low-noise, full-interferometer setup
- Key aspects: Silicon mirrors (3 to 100+kg), cryogenics cryogenic liquids and sorption coolers, water/ice management), "new" wavelengths (1550 and 2090nm), coatings etc
- Start with 2 FPMI, one initially at 120K and one 15K (2022+)
- >20 partners from NL/B/G/FR/SP/UK
- Initial capital funding of 14.5 MEuro
- Detailed Design Report available at apps.et-gw.eu/tds/?content=3&r=17177
- Open for everyone interested to join
- For more information please see: <u>www.etpathfinder.eu</u>

CREDIT: S. Hild

Einstein Telescope – R&D

Einstein Telescope: A 3rd Generation Gravitational Wave Detector

II Korean Group in ET

 \bigcirc

www.kasi.re.kr

ET Structure

Instrument Science Board (ISB)

ISB > Optics > Squeezed Light Working Group

- Sungho Lee, Chang Hee Kim, Kyungmin Kim, Byeongjun Park
 - Global design subgroup
 - EPR simulation subgroup

Young-Sik Ra, Geunhee Gwak, Byeong-Yoon Go

Squeezed light source (1550 nm) subgroup

June Gyu Park

- Global design subgroup
- PyGWINC simulation subgroup

Soojong Pak, Hojae Ahn, Sumin Lee

Global design subgroup

ISB > Optics > Input Output Optics / Wavefront Sensing & Control

Soojong Pak, Hojae Ahn, Sumin Lee

- Input Output Optics working group
- Wavefront Sensing and Control working group

Sungho Lee

히대희

Input Output Optics working group

ISB – Optics– Core Optics Working Group (HF/LF)

Kyung-ha Lee

• Atomic structure characterization research for RT and cryogenic coating potential candidates

• Atomic structure characterization via TEM

 Adapting the approach we have established in past 3 years to find the optimal coating candidates for ET-HF which will operate in room temperature condition and ET-LF which will operate in cryogenic condition

• Interface study

- Investigate the fundamental reason for the discrepancy between single layer loss and multi-layer loss
- Potential diffusion of particular elements across the interface between each layer

ISB - Interferometer - Noise Characterization

Kujin Kwak, Kihyun Jung, Woojin Lee

- Experienced with KAGRA Detector Char.
- Glitch finding, classification, elimination

This image most likely belongs to Spire with a 95.15 percent confidence.

Young-Min Kim

• Experienced with LIGO/KAGRA Detector Char.

Collaboration with the UNIST group

Trying to introduce AI in the glitch classification

In the future, it is possible to • contribute to the detector characterization for ET that will be built similar to the KAGRA environment.

OSB - Division 3 - Population Studies

Chunglee Kim, Sumi Lee, Seohyun Park

- BBH populations of astrophysical origin
- BH mass spectrum and BBH formation

ET will be sensitive to observe massive BBHs than those detectable by LIGO-Virgo-KAGRA detectors

- Mass of ET sources: O(1) ~ O(10,000) of Msun
- Redshift : up to O(10)~O(100)
- → Participating in the ET Blue Book (science cases)
- \rightarrow ET mock data challenge

OSB - Division 7 - Stellar Collapse and Isolated Neutron Stars

Kujin Kwak, Kihyun Jung

 Numerical method developed for the relativistic photon radiative transfer → Neutrino transfer during the core collapse

Young-Min Kim, Jinho Kim

- Numerical simulation for EOS of neutron stars
- Collaboration with the UNIST group

- LMXBs (Low Mass X-ray Binaries):
 - XRBs (X-ray Bursts), Superbursts, Evolution and population studies in collaboration with Ewha and IBS/CENS
- Stellar evolution (SE) of massive stars with MESA (public SE code)
- Pre-supernova models with different conditions
- Predicting neutrino fluxes as well as GW signals

Korean Group in the ET Collaboration

Korean Research Unit

- ✓ 20 members from 7 institutions
 (KASI, KAIST, KHU, UNIST, EWU, SKKU, Yonsei)
- ✓ KGWG: 68 members (2024-09-19)
- ✓ 14 members in 2022, at the start of the ET Collaboration
- ✓ NIMS group will join soon!

Thank you for your attention!

