Recent activity from KoALICE

al a abade a fille

Sanghoon Lim for the KoALICE group

Pusan National University

ALICE

ALICE

- Central Barrel: tracking, particle ID, and EM calorimetry ($|\eta| < 0.9$) \bullet
- Forward muon arm $(2.5 < \eta < 4.0)$
- Major upgrades in LS2: New inner tracking system, forward muon tracker, and TPC upgrade

arXiv:2302.01238

arXiv:2211.04384

KoALICE

KoALICE in numbers (53+1) 18 PhD Physicists (18 M&O-A) 10 PhD Students 23 Master Students 1 researcher (post-MS degree) 1 Administrative Assistant +1 PhD Physicists from KISTI (1 M&O-A)

Primary research subject in ALICE

5

Charged particle pseudo-rapidity density in Pb-Pb at 5.36 TeV

Charged particle pseudo-rapidity density in pp at 13.6 TeV

7

Charged particle pseudo-rapidity density in pp at 13.6 TeV

Clear collectivity in pp collisions

Charm fragmentation (hadronization) is not universal

Strangeness enhancement is a property of underlying events

ALICE in the future

FoCal

- FoCal-E: 20 layers of W (3.5 mm≈1X₀)+Si sensors
 Two sensor types: pad and pixel (ALPIDE)
- FoCal-H: conventional metal-scintillator sampling calorimeter
- Parton distributions in protons and nuclei with photons and jets at forward rapidity

• ITS3

- Replacement of 3 innermost layers of ITS2 with curved wafer-scale silicon sensors
- low material budget: $0.05\% X_0$ per layer
- Improved tracking precision and efficiency at low $p_{\rm T}$

- New inner tracking system (ITS2) for Run 3
 - 7 layers (3 inner + 4 outer)
 - Monolithic Active Pixel Sensor Technology
 - Pitch: 29 x 27 μ m²
 - Thickness: 50 μ m for inner, 100 μ m for outer
 - $5 \,\mu\text{m}$ position resolution, >99% hit efficiency

ITS3 in Run 4

ITS3 in Run 4

ALPIDE (ITS2, 180 nm)

- ALice Plxel DEtector
 - Manufactured with Tower Semiconductor 180 nm CIS
 - 1024 x 512 pixels
 - Used chip for ITS2
 - 50, 100 um thickness
 - > 99 % detection efficiency
 - Bent chip test + use reference planes detector in telescope

MLR1 (65 nm)

- Multi-reticle Layer Run 1
 - Qualifying the TPSCo 65 nm CIS
 - 55 prototypes sensors
 - Analog Pixel Test Structure (APTS)
 - 6 x 6 pixels
 - Direct analog readout of central 4 x 4
 - 10, 15, 20, 25 um pitches
 - Digital Pixel Test Structure (DPTS)
 - 32 x 32 pixels
 - Asynchronous digital readout

ER1 (65 nm)

Engineering Run 1

First MAPS for HEP using stitching

- MOSS: 14 x 259 mm, 6.72 MPixels
 - (22.5 x 22.5, 18 x 18 um²)
 - Conservative design
 - Different pitches
- MOST: 2.5 x 259 mm, 0.9 MPixels (18 x 18 um²)
 - More dense design

Sensor performance study

Develop a telescope and perform a beam test (KEK PF-AR)

- Collaboration with Japanese colleagues
- Electron beam @ 3 5 GeV/c
- Various DUT sensors have been studied
 - Bent ALPIDE
 - APTS-SF
 - CE65v2

Efficiency of the bent sensor

Still >99% efficiency after bending

Consistent results with the results from the ALICE ITS3 team

The paper is under preparation

Sensor performance study

Participation in babyMOSS lab test and beam test (CERN PS) KoALICE group will produce a new telescope with babyMOSS (beam test at KEK PF-AR in early next year)

VCASN D

ALICE in the future

- Heavy-ion physics at the LHC beyond Run 4
 - Parton transport: high-precision beauty measurements
 - Formation of hadrons: multi-charm baryons, P-wave quarkonia, exotic hadrons
 - Bulk and shear viscosity: azimuthal asymmetry of electromagnetic radiation
 - Chiral symmetry restoration: low mass dileptons
 - Collectivity in small systems: high event rates and a large acceptance

ALICE 3: Detector Overview

- Compact and large acceptance
 - $|\eta|$ <4 and $p_{\rm T}$ >0.02 GeV/c
- Superconducting magnet system
 - Maximum field: B=2 T
- All silicon-based large acceptance tracker
 - ~10% X₀ overall material budget
 - ~10 μ m pointing resolution at p_T ~200 MeV/c
- Particle identification in a wide p_{T} and η range
 - Silicon-based TOF and RICH
 - Muon identification
- Continuous readout and online processing

ALICE 3: Outer Tracker

- 8 layers and 9 disks based on MAPS
 - Total of ~60m² of silicon
 - Compact design (R<80 cm, |z| < 4 m)
- Pixel pitch of ~40 μ m for ~10 μ m intrinsic resolution

Spaceframe

Module

- $1\% X_0$ per layer
- Low power: ~20 mW/cm²

Layer	Det.	Material	Intrinsic	Barrel la	yers	Forward disks	
		thickness $(\%X_0)$	resolution (µm)	Full length (Δz) (cm)	Radius (r) (cm)	Position ($ z $) (cm)	$R_{\rm in}-R_{\rm out}$ (cm)
6	IT/OT	1	10	1×124	20	150	5–68
7	ОТ	1	10	1×129	30	180	5-68
8	OT	1	10	2×129	45	220	5-68
9	OT	1	10	2×129	60	260	5-68
10	OT	1	10	2×129	80	300	5–68
11	OT	1	10			350	5–68

Sensor: $3.2 \times 2.5 \text{ cm}^2$

Path to the module after sensor fabrication

Sensor test procedure for ITS2 # for ALICE 3 OT

Under discussion with a wafer probing company in Korea for a test run

Module assembly procedure for ITS2 OB 2600 modules for ~2 years in 5 sites

1) Chips positioned on the HIC table

2) Glue mask on FPC

Path to the module after sensor fabrication

ALICE 3 OT: 5620 for barrel and 2688 for disks ~10000 modules considering yield and spares

3) Gluing and curing

~5 hours curing time

Module assembly for ALICE 3 OT

- Automatization and industrialization of module assembly
 - Collaboration with MEMSPACK using a multi-purpose machine die bonder

.0.0

Datacon 22

MRSI-705

MRSI

Automatic Wafer and Tool Changer Fully Automatic cycle for Multi-Chip production Up to 7 Pick & Place tools (optionally 14), 5 eject tools • Stamping tools and calibration tools possible

Pick & Place Head • Die Attach, Flig Chip and Multi-Chip in one machine • Die pick from: wafer, waffle pack, Gel-Pak[®], feeder • Die piacte to: substrate, boat, carrier, PCB, leadframe, wafer • Hot and cold processes supported: epoxy, soldering, thermo-compression, eutectic

Dummy module assembly (2024 March)

- Machine validation using dummy chips and dummy boards
 - Both for ITS2 OB HIC design and ALICE 3 OT design
 - Thicker chip (50-100 μ m) and board (0.3 mm) to validate the repeatability of position precision
 - Successfully produced five modules with good position precision (using double-sided tape)

	Distance measurement – 🗆 🗙				Distance measurement – 🗆 🗙			
	lee			ш	Measure#	PP-X	PP-Y	Distance
Measure#	PP-X	PP-Y	Distance	ш.	1	-0.000002 mm	15.15 mm	15.15 mm
1			30.149999 mm	ш.	2	-0.000002 mm	15.15 mm	15.15 mm
2	30.15 mm	0 mm	30.15 mm	ш.	3	0 mm	15.149999 mm	15.149999 mm
3	30.149999 mm	0 mm	30.149999 mm	ш.	4	0 mm	15.149999 mm	15.149999 mm
4	30.15 mm	0 mm	30.15 mm	ш.	5	0 mm	15.15 mm	15.15 mm
5	30.15 mm	0 mm	30.15 mm	ш.	6	0 mm	15.149999 mm	15.149999 mm
6	30.149999 mm	0 mm	30.149999 mm		/	Umm	15.15 mm	15.15 mm
						-		

Dummy module assembly (2024 June)

- Die bond with heat cure epoxy
 - Epoxy generally used by MEMSPACK
 - Heat cure condition: 100 °C, 30 minutes (outside from the die bonder machine)
 - Dispense epoxy on the PCB (a few lines) and place chips
 - 0.3 mm thick chip (will reduce gradually)
 - Various dispensing patterns to minimize the position variation

Dummy module assembly (2024 June)

- Die bond with heat cure epoxy
 - Epoxy generally used by MEMSPACK
 - Heat cure condition: 100 °C, 30 minutes (outside from the die bonder machine)
 - Dispense epoxy on the PCB (a few lines) and place chips
 - 0.3 mm thick chip (will reduce gradually)
 - Various dispensing patterns to minimize the position variation
 - Reasonable position precision but needs to be optimized

Dummy module assembly (2024 October)

- Die bond with heat cure epoxy
 - Epoxy generally used by MEMSPACK
 - Heat cure condition: 100 °C, 30 minutes (outside from the die bonder machine)
 - Dispense epoxy on the PCB (a few lines) and place chips
 - 0.3 mm thick chip (will reduce gradually)
 - Confirmed a good position precision
- To do
 - Thinner chip
 - Flexible PCB
 - Wire bonding
 - Epoxy (Araldite 2011)

Result					
	x	Y			
#1	32.1583	25.1466			
#2	32.1581	25.1434			
#3	32.1337	25.1428			
#4	32.1582	25.1460			
#5	32.1528				
#6	32.1493				
Spec Min	0.010	0.010			
Spec Max	0.010	0.010			
MIN	32.134	25.143			
MAX	32.158	25.147			
AVG	32.152	25.145			

Concept of mass production procedure

- Uses several assembly jigs to run the assembly station continuously
 - FPCB is held with a vacuum during curing
 - Plan to build the system and verify the procedure
 - Expected production rate: 20-30 modules (chips+FPCB) per day, even with Araldiate 2011

Customized module assembly machine (C-ON tech)

- Initial design for the customized machine
 - Chip handling system will provide an accurate position precision
 - Plan to produce a prototype machine in 2025

Radiation hardness test

- Proton beams (15~20 MeV) at KOMAC TR23 can be utilized for radiation hardness test of epoxies
 - High-intensity beams (10¹⁰⁻¹¹ #/cm² s)
 - Comparison between different epoxies, including Araldite 2011
 - First run in Oct/16-17 and second run in Dec/23-24

Summary

KEEP MOVING FORWARD

