Yemilab Status (AMORE + COSINE)

Hyunsu Lee

Center for Underground Physics (CUP) Institute for Basic Science (IBS) KSHEP Fall Meeting Nov 28-30, 2024 @ UNIST

What are we looking for?

• Neutrinoless double beta decay $(0\nu\beta\beta)$

i.e.) 136 kg of 136 Xe = 1000 mol × 6.02×10²³ atom/mol = 6.02×10²⁶ atom

Challenge : We need to observe 1 event signal from 100 kg detector of 1 year operation

What are we looking for?

detector of 1 year operation

Extremely Rare events!!

Background control is key

Comic muon

Rate ~ 200 muon/m²/s ~ 6×10^{9} /year

Energy ~ 100 GeV

To stop 100 GeV muon, we need ~ 100 m length lead

Go to the underground laboratory

Yangyang Underground

10² Surface Y2L OROVILLE (USA) IMB (USA Yemilab SOUDAN (USA) KAMIOKA (Japan) BOULBY (UK) GRAN SASSO (Italy) HOMESTAKE (USA) SUDBURY (Canada) BAKSAN (Russia) CANFRANC (Spain) ST. GOTHARD (Switzerland) FREJUS (France) MONT BLANC (France) 2000 3000 4000 5000 6000 Depth (m.w.e) Sea level : 200 muon/m²/s ~ 6×10^{9} /year : 0.004 muon/m²/s ~ 1×10^{5} /year Yemilab : 0.001 muon/m²/s ~ 2.5×10^{4} /year JCAP 02 (2021) 013 Front. Phys. 12 (2024) 1323991

Yangyang Underground Laboratory (Y2L)

 Korea has Yangyang underground laboratory (Y2L) with about 200m² space since 2003.

KIMS/COSINE (Dark Matter Search) AMoRE (Double Beta Decay Experiment) Minimum depth : 700 m / Access to the lab by car (~2km) Shallow depth No expendable

cience (IBS)

Yemilab for new discoveries

 New underground laboratory in Korea is one of the most important milestone of the CUP/IBS – 10 years journey

Handeok iron mine, Jeongseon, Gangwon, Korea

* Milestones :

Construction cost ~30 M\$

2. Men-riding cage (600m2 ng)

2018-2022

Mt. Yemi (EL 998m)

lew Underground aboratory

Front. Phys. 12 (2024) 1323991

1. Access Tunne 720 long

Yemilab

600 m

ASL -35 m

7201

ASL -120 m

- ~1000 m depth, more than 3000 m² space
- Two access ways, ramp-way (30 min) and elevator (3 min)

Jump pit

(13470415 IN3)

Open to other researchers

Electricity

Carlenna Argenna

Hyun Su Lee, Center for Underground Physics (CUP), Institute for Basic Science (IBS)

Noritor room

uphalRadon

Outdoor unit

Yemilab aceess

Underground facilities

Emergency power generator (360 kW) Full mobile communication (LTE) 1 GB optical network to ground office

sic Science (IBS)

Hyun Su Le

Yemilab

Yemilab

• Human path

Experimental area

Access tunnel

- Started dust protection procedure since March 2024

Radon level problem

Radon level is extremely high at Summer season

- ➢ 2000 Bq/m³
- ➢ Safety requirement < 200 Bq/m³

Radon-less air supply system

- > The construction was mostly done in Dec., just test remained
- ➤ The goal is keeping the Rn concentration always under 150 Bq/m³
- \succ The benefit of this system can be had from this summer

Monitoring of environment, infra, safety

- Initiating the monitoring of various environmental parameters
 - Support both experimental operations and safety measure
- To do lists
 - Implement access control and monitoring systems
 - Install and operation CCTV surveillance
 - Additional measures as needed
 - …… (contingent upon budget availability)

Y2L relocation to Yemilab

Y2L side, after moving

> HPGe array and PCW remained only

Plan to move all remaining items by end of 2025

Y2L relocation to Yemilab

Most of detector and infrastructure were relocated to Yemilab without HPGe array

HPGe

CC2

Alpha counter

COSINE-100U

COSINE test bench

COSINE-100 shield frame

Outreach of Yemilab

Yemilab ground

Yemilab ground

Yemilab ground

Jeonseon-gun (local city) provide 12 houses apartment (생활관)

ence (IBS)

Physics program at Yemilab COSINE

Annual modulation signal from DAMA/LIBRA

Back to 1998.. Before CUP.. KIMS

Test of $CsI(T\ell)$ crystals for the Dark Matter Search

ICHEP1998 Proceeding

H.J.Kim, ^{1,2} H.J.Ahn, S.K.Kim, E.Won, ³ T.Y.Kim

Department of Physics, Seoul National University, Seoul 151-742, Korea

Y.D.Kim

Department of Physics, Sejong University, Seoul 143-747, Korea

M.H.Lee

KEK, Tsukuba, Ibaraki 305-0801, Japan

Recently, positive signal of annual modulation has been reported by DAMA group [6]. Looking at the similar sensitivity region with other experiments which involves different systematics is absolutely necessary to confirm their results. It has been noted by several authors that $CsI(T\ell)$ crystal may give better performance for the separation between recoiling events and the ionizing events by background γ [7]. Although the light yield of $CsI(T\ell)$ crystal is slightly lower than NaI(Tl) crystal, better particle separation can be more advantageous for WIMP search. Also $CsI(T\ell)$ has much less hygroscopicity

KIMS Experiments

Exclude dark matter-iodine interaction as the source of DAMA modulation signal

We need to check dark matter-sodium interaction!! Require NaI(Tl) experimentHyun Su Lee,Center for Underground Physics (CUP),Institute for Basic Science (IBS)

Astropart. Phys. 62 (2015) 249 Eur. Phys. J. C 76 (2016) 103 Eur. Phys. J. C 77 (2017) 437

8 crystals, 106 kg in total kg from KIMS, 54 kg from DM-Ice with extensive detector R&D

COSINE-100 since 2015

COSINE-100 detectors

Eur. Phys. J.C. 78 2018 107 Eur. Phys. J. C 78 (2018) 490 JINST 13 (2018) P09006 JINST 13 (2018) T02007 JINST 13 (2018) T06005 NIMA 981 (2020) 164556 JINST 17 (2022) T01001 -Physics run October/2016 – April/2023 Yangyang underground laboratory

COSINE-100 tested DAMA/LIBRA

Annual modulation searches

1-6 keV modulation amplitude

COSINE-100	0.0067 ± 0.0042
DAMA/LIBRA	0.0105 ± 0.0011
ANAIS-112	-0.0034 ± 0.0042

COSINE-100 (2016-2023) @ Y2L

Full dataset annual modulation

COSINE-100 full dataset disfavors DAMA/LIBRA in both electron recoil and nuclear recoil (> $3\sigma CL$) Closing DAMA/LIBRA!!

Low-mass dark matter search with Nal(TI)

3 years data (0.7 keV energy threshold, 8 number of photoelectrons)

WIMP-proton spin-independent interaction WIMP-proton spin-dependent interaction

- This can be enhanced by reduced energy threshold!!
 - Can reach to 5 number of photoelectrons
Detector understanding

Search for dark-sector particles with COSINE-100

Moving forward to COSINE-100Upgrade

Moving forward to COSINE-100Upgrade

 Upgrade detector assembly for high light yield **Crystal machine @ company**

8.26 kg

EL

→ 7.19 kg

Deliver to glove box

COSINE crystal-1

Hyun Struce,

Above ground measurement

Cover design

 14.9 ± 1.5 → 21.5 ± 0.6 NPE/keV COSINE-100 C2 COSINE-100U C2

Institute for Basic Science (IBS)

COSINE-100U : Yemilab installation

Freeze room for -30°C operation

Astropart. Phys. 141, 102709 (2022)

• We plan to start COSINE-100U early 2025

Liquid scintillator veto Lead shield

Crystal installation

COSINE-100U sensitivity

COSINE-200 crystal development

Crystal ingots

Machining

Assemby

Hyun Su Lee,

Powder purification performance K.A. Shin et al., J. Rad. Nucl. Chem. 317, 1329 (2018)

K.A. Shin et al., JINST 15, C07031 (2020)

K.A. Shin et al., Front. Phys. 11, 1142849 (2023)

	K (ppb)	Pb (ppb)	U (ppb)	Th (ppb)
Initial Nal	248	19.0	<0.01	<0.01
Purified Nal	<16	0.4	<0.01	<0.01

We produced ~ 400 kg low-background NaI powder

(Maximum production rate ~ 100 kg/month)

A proof of principle for low background Nal

Large crystal growing is going on

Physics program at Yemilab AMore

Neutrinoless double beta decay

Beta decay is forbidden

~ 35 candidate

- If neutrinos are Majorana
- Lepton number violation
- Q > 2 MeV (Only 11 candidates)
- Measure absolute neutrino mass

$$\Gamma^{0
u}_{etaeta} = rac{1}{T^{0
u}_{etaeta}} = G^{0
u} \cdot \left|M^{0
u}
ight|^2 \cdot \langle m_{etaeta}
angle^2$$

Good Energy resolution & low-background are required

Detection Principle

Heat and light signals at low temperature

Mo-100 based scintillation crystal (XMO) as source and target at 10–20 mK.

AMoRE-pilot (2015-18) and AMoRE-I (2020-23)

AMoRE-I results

AMoRE-II is under preparation @ Yemilab

DR installed in Yemilab

Detector/shielding scheme

AMoRE Hall in Yemilab

,

AMoRE-II is under preparation @ Yemilab

Muon Counter

Module design

Phase1 start around early 2025

Hyun Su Lee,

Center for Under

sics (CUP),

Institute for Basic Science (IBS)

AMoRE-II is under preparation @ Yemilab

Muon Counter

Module design

180 kg LMO at final

Phase2: 10 +35 towers = 50 towers (450 crystals) Maximum: 50+26 towers·12 crystal/tower ~ 912 crystals

Phase2 start around 2026~2027

AMoRE-II sensitivity

- Background assumption : 2×10^{-4} counts/keV/kg/yr,
- FWHM energy resolution ~10 keV at ROI
- ~5 year operation can cover inverted mass ordering

arXiv:2406.09698

Sensitivity for effective neutrino mass

Summary

- Yemilab has been opened and upgraded to support cuttingedge experiments
 - Transitioned from Y2L, providing enhanced infrastructure and capabilities
 - AMORE-II and COSINE-100U will start physics operation soon
 - Yemilab welcomes external users for collaborations
- COSINE-100 full dataset disfavor DAMA/LIBRA's annual modulation claims
- COSINE-100U will expand searches for **low-mass dark matter**
- AMoRE-I established the **best half life limit** for ¹⁰⁰Mo
- AMoRE-II aiming to reach the **inverted ordering** regime

Thank you

NEON Experiment

Reactor photons

Reactor dark sector bosonic particles

Light Dark Matter Search

Ve ON

Through light dark matter (LDM) production

Radon protection for rare event search

• Normal level of Rn (~40 Bq/m³) provide huge background

DAMA/LIBRA

Flushing N2 gas inside detector room

Radon-free air supply for experiment

- Y2L (ATEKO, Czech) : 150 m³/h, 5 mBq/m³
- Duty cycle <70%, Difficult to maintain

Radon-free air supply for experiment

- Yemilab (Korean Company) : 50 m³/h, 20 mBq/m³
- Duty cycle >95%

- It has been successfully domestically developed
- Plan to create a larger system for a 200 m³/h supply, contingent upon budget availability

Yemilab operation team

Currently 8 members

- System development
- Construction
- Shield structure design

Kangsoon Park

Jung Ho So

Management external users

System development

Electrical equipment

System development

- Tunnel safety

Seon Beom Kim

Underground communication Networking

Tunnel monitor system

- Electrical Safety

- Visitor guide
- Ji Hoon Kim

Purchase

- **Budget** execution
- Visitor guide

Electrical equipment New Electrical Safety

Sang Chul Yoon

Woon Gu Kang

2

New

Environmental monitoring

COSINE collaboration

Since 2015

15 institutes ~60 members

0

COSINE-100 detectors

COSINE-100U : Detector upgrade

COSINE-200 crystal development

Crystal ingots

Machining

Assemby

Hyun Su Lee,

Powder purification performance K.A. Shin et al., J. Rad. Nucl. Chem. 317, 1329 (2018)

K.A. Shin et al., JINST 15, C07031 (2020)

K.A. Shin et al., Front. Phys. 11, 1142849 (2023)

	K (ppb)	Pb (ppb)	U (ppb)	Th (ppb)
Initial Nal	248	19.0	<0.01	<0.01
Purified Nal	<16	0.4	<0.01	<0.01

We produced ~ 400 kg low-background NaI powder

(Maximum production rate ~ 100 kg/month)

A proof of principle for low background Nal

Large crystal growing is going on

COSINE-100U sensitivities

WIMP-proton spin-dependent

Low mass search with Migdal

22 NPE/keV, 1 year operation (100% efficiency), 5 NPE threshold

- A world best sensitive detector for low-mass WIMP-proton spindependent interaction
- Feasibility test for the COSINE-200 & 1T experiments

AMoRE experiment

Yoomin's talk

(Monday)

Simultaneous detection of heat/light signals

To observed the neutrinoless double beta decay of ¹⁰⁰Mo

- Metallic magnetic calorimeter (MMC) and SQUID:
 - Fast signal response → less random coincidence (pile-up) bkg.
 - Energy resolution ~ 10 keV FWHM at 2.6 MeV.
- Operation at 10-20 mK temperature for AMoRE.

AMoRE-pilot @ Y2L

- 6 Ca¹⁰⁰MoO₄ crystals (1.9 kg)
- **Operated 2015-2018**
- Understand vibration noise
- Understand radioactive backgrounds ^{0.5} ckky(counts/kg/keV/year) @ ROI
 T_{1/2} > 3.2×10²³ years

Energy (keV)

Energy (MeV)

JLTP 193 (2018) 786-792

Institute for Basic Science (IBS)

AMoRE-I progress

- AMoRE-I began Aug. 2020 @ Y2L and runs stably until May/2023
- 13 Ca¹⁰⁰MoO₄ crystals and 5 Li₂¹⁰⁰MoO₄ crystals, ~6 kg (3 kg of 100 Mo)

Full data set

~10 kg years crystal exposure ~5 kg years ¹⁰⁰Mo exposure

- Background around ROI ~ 0.03 count/kg/keV/year (ckky)
 - Finalizing result using full dataset : soon will be released!!
- AMoRE-I stopped physics operation May/2023 and AMoRE-II @ Yemilab is under preparation to start phase1 at early 2014
AMoRE-II @ Yemilab

- 100 kg of ¹⁰⁰Mo @ Yemilab for 5 years
- Li₂¹⁰⁰MoO₄ crystals in 5 and 6 cm cylinder. (~ 400 crystals)
- DR inside heavy shielding with Pb, PE, and water.
- Muon detectors installed.
 - 132 Plastic Scintillator Muon Detectors (PSMD)
 - Water Cherenkov Muon Detector(WCMD) with 48 PMTs, 70 cm thick water.

For the first time, $\text{Li}_2^{100}\text{MoO}_4$ enriched crystal grown at IBS(Daejeon) shows satisfactory performance. Alpha rejection power is over 10 & low contamination of U and Th

AMoRE-II preparation @ Yemilab

8" PMTs

700mm thick

water

HDPE block-

Physics (CUP), Institute for Basic Science (IBS)

AMoRE-II background

- Background understanding from AMoRE-pilot & I
- Various measurements of detectors & detector components
- ~10⁻⁴ ckky at ROI is achievable

Matrix Element Calculation

- · Extremely hard problem to solve
- Both microscopic and macroscopic nuclear models are used to calculate NMEs, each with its own strengths and limitations
- Different successful approaches (e.g., IBM, QRPA, EDF) disagree by a factor of 2-3
- · Difficult to quantify errors in a reliable way
- · Ab-initio methods but not yet applicable to heavy nuclei
- Various experimental probes, including charge exchange reactions, nucleon exchange, muon capture, double gamma decay, etc are used to test and constrain NME calculations

$$[T_{\frac{1}{2}}^{0\nu}]^{-1} = G^{0\nu}(Z,Q) \cdot (g_A)^4 \cdot \left| M^{0\nu} \right|^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^{0\nu} |_{\mathcal{I}}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^{0\nu} |_{\mathcal{I}}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^{0\nu} |_{\mathcal{I}}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^{0\nu} |_{\mathcal{I}}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^{0\nu} |_{\mathcal{I}}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^{0\nu} |_{\mathcal{I}}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^{0\nu} |_{\mathcal{I}}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^{0\nu} |_{\mathcal{I}}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^{0\nu} |_{\mathcal{I}}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|} M_{ij}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|}} M_{ij}^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2} \xrightarrow{\text{Majorana}}_{\substack{\text{Majorana}}_{\substack{\text{mass} \\ |m_{\beta\beta}| = |\sum_{i=1}^3 U_i|} M_{ij$$

Axial vector coupling (factored out of NME)

an Engel and Javier Menéndez 2017 Rep. Prog. Phys. 80 046301