(alexand) Colore(Actual) and the analysis of the local of the second formation (

en einer eine eine einer eine

E MARKE HALLE TEAM AND THE REAL PROPERTY OF THE REAL PROPERTY OF

2024 Fall KSHEP Meeting November 29, 2024 UNIST

> SungWoo YOUN Center for Axion and Precision Physics Research Institute for Basic Science

Dark matter business expanding

Axion dark matter

- Strong CP problem
 - PQ mechanism (1977)
 - U(1) global symmetry and scalar field
 - SSB => axion field (1978)
 - QCD axion: $m_a^2 f_a^2 \sim m_\pi^2 f_\pi^2$ (cf. ALP)
 - Invisible axion (1979): $m_a \approx 10^{-6} eV \frac{10^{12} GeV}{f_a}$
- Cosmological implication
 - Accounting for dark matter (1983)

Absence of nEDM

Spontaneous Symmetry Breaking

 $a(x) = \theta \times f_a$ at minimum

Axion models and detection

	Photons	Fermions	nEDMs
Hamiltonian	$g_{a\gamma\gamma}aE\cdot B$	$g_{aff} \mathbf{\nabla} a \cdot \widehat{\mathbf{S}}$	$g_{EDM} a \widehat{m{S}} \cdot m{E}$
Observable	Photon	Spin precession	Oscillating EDM
Detection	Power spectrum, photon counter,	Magnetometer, NMR,	NMR, polarimeter,

Axion models

PQWW	DFSZ	KSVZ	
SM ferminons		BSM fermions	
2 Higgs	2Higgs+singlet	Higgs+singlet	
Standard ($f_a \sim v_{EW}$)	Invisible ($f_a \gg v_{EW}$)	
Ruled out	Benchmark		

Detection principle

- Sikivie effect (1983)
 - Macroscopic Primakoff

Solar

axion

flux

Lase

Sunset

system

Magnet bore

Production Cavity (PC)

Magnet String

۲

is Search strategies

Dark matter halo in our galaxy

$$P_{a\gamma\gamma} \approx 9 \times 10^{-23} W \left(\frac{g_{a\gamma\gamma}}{0.36}\right)^2 \left(\frac{\rho_a}{0.45 \frac{GeV}{cc}}\right) \left(\frac{f_a}{1.1 GHz}\right) \left(\frac{B_0}{10.5 T}\right)^2 \left(\frac{V}{37 L}\right) \left(\frac{C}{0.6}\right) \left(\frac{Q_c}{10^5}\right)^2 \left(\frac{V}{10^5}\right) \left(\frac{Q_c}{10^5}\right)^2 \left(\frac{V}{10^5}\right)^2 \left(\frac{V}{10$$

- Helioscope
 - Solar axion

•
$$\mathcal{P}_{a \to \gamma} \approx 2.6 \times 10^{-17} \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{ GeV}^{-1}}\right)^2 \left(\frac{B_0}{10 \text{ T}}\right)^2 \left(\frac{L}{10 \text{ m}}\right)^2 \mathcal{F}, \quad \mathcal{F} = \frac{2(1 - \cos qL)}{(qL)^2}$$

~10 photons/day

Axion production at lab

•
$$\dot{N_{\gamma}} \approx 4 \times 10^{-5} Hz \left(\frac{g_{a\gamma\gamma}}{10^{-10} \ GeV^{-1}}\right)^4 \left(\frac{P_{laser}}{40 \ W}\right) \left(\frac{BL}{560 \ Tm}\right) \left(\frac{\beta_{PC}}{5000}\right) \left(\frac{\beta_{RC}}{40000}\right)$$
 ~1 photon/day

Sunrise

system

Detector

X-ray telescope

Shielding X-ray detector

Regeneration Cavity (RC)

L = 9.26 m

B ~ 9 T

Wall

Axion searches

e for Bas

bS

Haloscope (DM axion)

- Most sensitive for DM axion search in μeV region
 - Resonant conversion of axions into microwave photons
- Axion-photon conversion power ($a \rightarrow \gamma \gamma$)

$$P_{a\gamma\gamma} \approx 9 \times 10^{-23} W \left(\frac{g_{a\gamma\gamma}}{0.36}\right)^2 \left(\frac{\rho_a}{0.45 \frac{GeV}{cc}}\right) \left(\frac{f_a}{1.1 GHz}\right)$$

$$\times \left(\frac{B_0}{10.5 T}\right)^2 \left(\frac{V}{37 L}\right) \left(\frac{C}{0.6}\right) \left(\frac{Q_c}{10^5}\right)$$

Magnetic field (B_0)

Signal-to-noise ratio (SNR)

$$SNR = \frac{P_{signal}}{P_{noise}} = \frac{1}{4} \frac{P_{a\gamma\gamma}}{k_B(T_{sys}/0.2 \text{ K})} \sqrt{\frac{\Delta t}{Q_a/10^6}}$$

System noise (in temperature) $T_{sys} = T_{thr} + T_{add}$ ex) 0.2 K ~ 3×10⁻²² W (~4000 photons/sec)

Unknown mass = > scanning rate (F.O.M.)

$$\frac{df}{dt} \approx 2 \frac{GHz}{year} \left(\frac{5}{SNR}\right)^2 \left(\frac{0.2 K}{T_{sys}}\right)^2 \left(\frac{P_{a\gamma\gamma}}{1x10^{-22} W}\right)^2 \left(\frac{10^5}{Q_c}\right) \sim B_0^4 V^2 C^2 Q_c T_{sys}^{-2}$$

καις

Cavity haloscope – in a nutshell

Cryogenics T Quantum noise $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$ limited amplifier T - - -P~10-23 W + 1mm Signal amplification w/ minimal noise added Tunable High-Q resonator Lowering thermal noise а V, Q, C, Δf High field Magnet **B** All are advanced and well mature!

Boosting $a \rightarrow \gamma \gamma$ conversion

Resonant frequency tuning

ΚΔΙSΤ

2024 KSHEP

Cavity tuning and signal

Frequency (MHz)

is Cavity haloscopes

IBS-CAPP (2013~2024)

CAPP-9T

CAPP-12T

CAPP-8T

CAPP-8TB

Experiments

Refrigerators

Manufacture	Model	Τ _в [mK]	Manufacture	B _{max} [T]	Bore [mm]	Name
BlueFors (BF3)	LD400	10	AMI	12	96	CAPP-12T
BlueFors (BF4)	LD400	10				
Janis	HE-3- SSV	300	Cryo Magnetics	9	125	CAPP-9T
BlueFors (BF5)	LD400	10	AMI	8	125	CAPP-8T
BlueFors (BF6)	LD400	10	AMI	8	165	CAPP-8TB
Oxford	Kelvinox	30	SuNAM	18	70	CAPP-18T
Leiden	DRS1000	5	Oxford	12	320	CAPP-12TB

Magnets

Conducting **parallel** experiments targeting **different mass** regions!

R&D in CAPP

 $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

Minimal energy loss under a high magnetic field

High-quality factor

ReBCO HTS

Biaxially-textured 2D tapes (commercially available)

GdBCO HTS tape

3D SC cavity

Tapes on 2D pieces

Assembly

	1 st generation	2 nd generation 3 rd generat		eration
Material	YBCO	Gd BCO	Eu BCO + APC	
Manufacturer	AMSC	Theva	Fujikura	
Volume [L]	0.3	1.5	1.5	0.2
Freq. [GHz]	6.9	2.3	2.2	5.4
Q-factor @ 8 T	0.3 M	0.5 M	3.5 M	13 M
Application	Demonstration	Axion search	AQN search	Axion search

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

9

8

Magnetic Field (T)

Magnetic Field (T)

0.22 T

1 2 3 4 5 6

1.0x10⁵

5.0x10

0.0 tr

ibs HTS cavities

Uniquely developed and mature production technique

Integration with HF cavity designs

1.1590 84 1.1580

 $Q_{HTS} \sim 10 \times Q_{CII}$

 $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

Flux-driven Josephson parametric amplifiers (JPAs)

Quantum amplification

U. of Tokyo & RIKEN

• Flux-driven Josephson parametric amplifiers (JPAs)

Quantum amplification $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

U. of Tokyo & RIKEN

• Flux-driven Josephson parametric amplifiers (JPAs)

Quantum amplification $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

Parallel-Serial configuration

But, ... narrow bandwidth!

U. of Tokyo & RIKEN

Searches vs. predictions

Multiple-cavity

- Inefficient volume usage (< 50%)
- Multiple readout / signal combination / frequency-matching

Multiple-cell design

- More effective volume use (>90%)
- Single readout / tuning structure => simple design
- Field configuration => In-situ cavity characterization

~4 x f_{TM010}

Pizza with a saver

PLB **777** 412 (2018) NIMA **1053** 168327 (2023)

2024 KSHEP

*TM*₀₁₀

Search for QCD Axions in CAPP

HF (II): higher modes

$P_{a\to\gamma\gamma} = g_{a\gamma\gamma}^2 \cdot$	$\frac{\rho_a}{m_a}B^2 VC_{mnp}$	$\min(Q_L,Q_a)$
--	----------------------------------	-----------------

Mode	f _{rel}	Q _{rel}	V _{rel}	C _{abs}
<i>TM</i> ₀₁₀	1	1	1	0.69
<i>TM</i> ₀₂₀	2.3	1.5	1	0.13
<i>TM</i> 030	3.6	1.9	1	0.05

$$C_{mnp} = \frac{\left|\int \vec{E}_{c} \cdot \vec{B}_{0} dV\right|^{2}}{\int \varepsilon \left|\vec{E}_{c}\right|^{2} dV \int \left|\vec{B}_{0}\right|^{2} dV}$$

How to tune the frequency?

 $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

• Frequency tuning for higher-order modes

• • • • • • • • • • • • • • • • • • •	
Thickness	Frequency [GHz]
λ/5	8.99
λ/4	8.20
λ/3	7.22
λ/2	7.05
λ/1.5	6.86

2024 KSHEP

Search for QCD Axions in CAPP

HF (III): photonic crystal $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

Metal		Dielectric	
TM ₀₁₀ -like	Resonant mode	Monopole	
~ 0.9	Form factor C	~ 0.2	
< 10 ³	Quality factor Q	> 10 ⁵	
> 3/cm ²	# density	~ 1/cm ²	
Challenging	Construction / frequency tuning	Doable	-

Dielectric array (photonic crystal)

 $>10 \ x \ f_{TM010}$

Unit cell

metal wall

- $HF (III): photonic crystal \frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$
 - Frequency tuning 2D (isotropic) expansion/contraction
 - Kirigami tessellations w/ auxetic behavior

Nature materials 18, 999

Rotating regular squares

Rotation of the center block
Achievable using a single rotator

 $\omega_p^2 = \frac{2\pi}{a^2 \log(\frac{a}{2r})}$

2024 KSHEP

Search for QCD Axions in CAPP

- Extending to a 5x5 array for larger volume
- Experimental seutp for > 10 GHz ongoing

Axion Searches by CAPP

is Search highlight (II)

Search highlight (III)

Search for QCD Axions in CAPP

TUTE OF SCI

is Search highlight (IV)

Summary

- QCD axions could address fundamental questions
 - Strong CP problem & dark matter mystery
- Haloscope is the most sensitive method
 - IBS-CAPP has established a world-leading facility
- Research and development in CAPP
 - High-frequency / HTS cavity / quantum devices
 - Substantial improvement for exploring the parameter space
- Productive scientific results from CAPP
 - Experimental searches
 - CAPP-9T, -8T, -8TB, -12T, -18T and -12TB
 - Groundbreaking R&D products
- Continued contributions are needed
 - To advance our understanding of nature

Axion community growing fast

C. O'Hare (2020)

36

καις

CAPP (2013) Center for Axion and Precision **Physics Research**

 $\downarrow\downarrow\downarrow$

GAP (2025) Group for Axion Physics

HAS-GAP Hearing Axion Sounds through GAP

Axionic chiral magnetic effect

Low temperature Axion Chiral Magnetic Effect

38

(SPD)

Readout

Storage

 $(T_N \ll T_{SOI})$

Dark Matter

Microwave signal detection

SPD schemes

	Excitation	Intereference	Bolometer
Basis	Qubit	JJ-Qubit	JJ-TES
Quantity	Electron	Phase	Heat
Pros	High sensitivity	Non-demolition	Wide bandwith Robust
Cons	Bandwidth vs. Dark cout rate Low tunability	Narrow bandwidth Low tunability	<i>High noise level</i> Dead (relaxation) time

HTS cavities

Uniquely developed and matured fabrication technique

	1 st Gen.	2 nd Gen.	3 rd Gen.		4 th Gen.
Material	YBCO	Gd BCO	Eu BCO + APC		EuBCO + APC
Volume [L]	0.3	1.5	1.5	0.2	37
Freq. [GHz]	6.9	2.3	2.2	5.4	1.2
Q-factor @ 8 T	0.33 M	0.5 M	3.5 M	13 M	1.1 M

Integration with HF cavity designs

 $Q_{HTS} \sim 10 \times Q_{CU}$

 $\frac{df}{dt} \sim B^4 V^2 C^2 Q$

