Ultralight cold dark matter

Jae-Weon Lee (Jungwon Univ.)

Outline

1. Fuzzy DM and galaxies

2. Self-interacting ULDM

3. ULDM and neutrinos

Mass scale of dark matter (not to scale) TASI lectures by Lin arXiv:1904.07915 SIDM J. KIM WDM limit unitarity limit OCD axion $M_{\rm pl}$ 10^{-22} eV classic window keV GeV $10 M_{\odot}$ 100 TeV 10-6 - 10-4 eV WDM \rightarrow CDM HDM † ``Light" DM Composite DM ``Ultralight" DM WIMP S. Sin (Q-balls, nuggets, etc) black holes Ben. Lee dark sectors non-therma MACHO bosonic fields sterile v 2403.02386 can be thermal

ULDM = Fuzzy, ULA, BEC, Wave, Scalar Field, ψ , Superfluid, quantum ...

Compact objects in the mass range from $1.3 \times 10^{-5} M_{\odot}$ to 860 M_{\odot} cannot make up more than 10% of dark matter. (2403.02386) \rightarrow No DM star or planet observed in our galactic halo

Galaxies are DM dominated and seem to have ~ kpc size scale

No DM star or planet found so far \rightarrow DM has kpc scale?

Non-linear evolution (usually N-body)

Challenges for ACDM

2105.05208

• Λ CDM is very successful but encounters some tensions

- 1. Small scale crisis (at galaxy scale) predicts too many small structures not observed
- 2. Hubble parameter tension $\sim 5\sigma$: mismatch between Planck estimation and SN
- 3. S_8 tension ~2-3 σ : $S_8 \equiv \sigma_8 \sqrt{\Omega_m / 0.3}$ mismatch between Planck estimation and WL & Cluster
- 4. Early BH and galaxies (Webb)
- 5. Cluster collision (collision speed & offset)
- 6. Li problem

...etc

 \rightarrow Any good DM model should address these tensions

Galaxies observed

Any good DM model should explain observed galaxies

Some of small scale issues with CDM

ΛCDM Tensions with Dwarf Galaxies

Key problem is how to suppress small scale structures < dwarf galaxies.
 → we need a new CDM → ULDM with m~ 10⁻²² eV can solve many of these

- Still unsolved problems seem to be related to Baryon-DM relation
- Can baryon physics + precise numerical simulation + more observations save CDM?

Sales+ 2206.05295

Solutions to Small scale problems Key : How to generate the length scale ~ galaxy ~ kpc → How to give kinetic energy to DM

- CDM: finer resolution, tidal effects, Baryon feedback: SN, BH jets & more observations...
- WDM: thermal kinetic energy from $m \sim keV$
- SIDM: $\sigma/m \sim 1 \text{ cm}^2/g$ (v dependent?)
- FDM: $m \sim 10^{-22}$ eV, quantum pressure

[Q] Can these models solve all these problems with a *single set of parameters*?

ULDM: DM is in Bose-Einstein Condensate!

A.K.A. Fuzzy, ULA, BEC, Wave, ψ , Fluid, Quantum, ELB,,...

CDM (WIMP)

- Heavy, m > GeV
 Particle-like
- $d >> \lambda_{dB} \sim 1/mv$
- •Newton's eq
- •Random motion

•No scale practically

m: DM particle mass

ULDM

•Ultra-light, $m \sim 10^{-22} \text{ eV}$ •high # density $n \sim 10^{25} / \text{cm}^3$ $\rightarrow (d << \lambda_{dB}) \rightarrow wavfn. overlap$ •wave-like •SPE •coherent motion •Min. scale

$$m \approx 10^{-22} eV$$

BEC
$$T_c = \left(\frac{3n}{m}\right)^{1/2} \sim 5 \times 10^7 GeV,$$

ULDM

- Galactic DM halo is a BEC
- Quantum pressure (from uncertainty principle) prevents collapse
- Galaxy size ~ de Broglie wavelength of DM particles
- \rightarrow m ~ 10⁻²² eV
- Small m \rightarrow high # density \rightarrow overlap of wave fn. \rightarrow classical wave

Fig. 9 Map of the ULDM classes of models

Ferreira et al.

Linear pert. Of ULDM FDM has only 2 parameters m and bg density $ρ_0$ (+ λ for φ⁴ self-interacting ULDM)

a=scale factor

Nonrelativistic
Madelung
representation
Density contrast
(k space)
Nonrelativistic
Madelung
representation

$$i\hbar(\frac{\partial\psi}{\partial t} + \frac{3}{2}H\psi) = -\frac{\hbar^2}{2ma^2}\Delta\psi + mV\psi + \frac{\lambda|\psi|^2\psi}{2m^2}$$

$$perturbation with \psi = \sqrt{\rho}e^{iS}, \quad v \equiv \frac{\hbar}{ma}\nabla S \Rightarrow$$

$$\begin{cases} \partial_t \rho + 3H\rho + \frac{1}{a}\nabla \cdot (\rho v) = 0 \\ \partial_t v + \frac{1}{a}v \cdot \nabla v + Hv + \frac{1}{\rho a}\nabla p + \frac{1}{a}\nabla V + \frac{\hbar^2}{2m^2a^3}\nabla\left(\frac{\Delta\sqrt{\rho}}{\sqrt{\rho}}\right) = 0 \end{cases}$$

$$perturbation \delta = \delta_k = \delta\rho/\rho_0$$

$$perturbation \delta = \delta_k = \delta\rho/\rho_0$$

$$Quantum Pressure$$

$$\Rightarrow \partial_t^2 \delta + 2H\partial_t \delta + \left(\left(\frac{\hbar^2k^2}{4m^2a^2} + c_s^2\right)\frac{k^2}{a^2} - 4\pi G\rho_0\right)\delta = 0$$

$$gravity$$

Quantum Jeans length

$$\lambda_J = \frac{2\pi}{k_J} a = \pi^{3/4} \hbar^{1/2} (G\rho_0 m^2)^{-1/4} \propto 1/\sqrt{mH}$$

- CDM-like on super-galactic scale (for a small $k < k_J$)
- Suppress sub-galactic structure (for a large $k > k_J$)

Length scales of DM models

1) CDM, WIMP, WDM:
$$\partial_t^2 \delta + 2H \partial_t \delta + \left(\left(\frac{\hbar^2 k^2}{4m^2 a^2} + c_s^2 \right) \frac{k^2}{a^2} - 4\pi G \rho_0 \right) \delta = 0$$

 \rightarrow use free streaming length instead

 \rightarrow use free streaming length instead

2) FDM:
$$\partial_t^2 \delta + 2H \partial_t \delta + \left(\left(\frac{\hbar^2 k^2}{4m^2 a^2} + c_s^2 \right) \frac{k^2}{a^2} - 4\pi G \rho_0 \right) \delta = 0$$

 \rightarrow Q. Jeans length

3) self-int ULDM:
$$\partial_t^2 \delta + 2H \partial_t \delta + \left(\left(\frac{\hbar^2 k^2}{4m^2 a^2} + c_s^2 \right) \frac{k^2}{a^2} - 4\pi G \rho_0 \right) \delta = 0$$

 $p = \frac{2\pi a_s \hbar^2}{m^3} \rho^2, c_s^2 = p'(\rho) = \frac{4\pi a_s \hbar^2 \rho}{m^3}, \lambda_J = \sqrt{\frac{\pi \hbar^3 \lambda}{2cGm^4}}, a_s = \frac{\lambda \hbar}{8\pi mc}$ scattering length

4) pt. SIDM:
$$\partial_t^2 \delta + 2H \partial_t \delta + \left(\left(\frac{\hbar^2 k^2}{4m^2 a^2} + c_s^2 \right) \frac{k^2}{a^2} - 4\pi G \rho_0 \right) \delta = 0$$

Core/Cusp problem of CDM

$CDM (NFW) \rightarrow Cusp$

ULDM \rightarrow Core ~ de Broigle wave len.

Schive etal, Nature physics 2014

Density profile of small galaxies disfavors CDM
→ ULDM well explains the core profile

Features of ULDM

$$\phi(t, x) = \frac{1}{\sqrt{2m}} \begin{bmatrix} e^{-imt}\psi(t, x) + e^{imt}\psi^*(t, x) \end{bmatrix}$$

fast (bg), slow (galaxy)

- Typical galaxy size ~ λ_{dB} ~ kpc
- wave nature \rightarrow gravitational cooling
- small dynamical friction
- bg oscillation with $m \sim nHz$
- explain DM density
 → GUT scale field value

 \rightarrow explain many mysteries of galaxies

Typical scales of FDM JLee 2310.01442 time dependent and functions of $\frac{\hbar}{m}$

1) time

 $t_c \simeq (G\bar{\rho})^{-1/2}$: Hubble time

2) length (q. Jeans length) \rightarrow explain size evolution (JLee PLB 2016) $x_c = \lambda_{dB} = \left(\frac{\hbar}{m}\right)^2 \frac{1}{GM} = 854.8 \ pc \left(\frac{10^{-22}eV}{m}\right)^2 \frac{10^8 M_{\odot}}{M} = \sqrt{\frac{\hbar}{m}} (G\bar{\rho})^{-1/4}$

 \sim Gravitational Bohr radius \sim de Broglie wavelength

3) velocity

$$v_c \equiv x_c/t_c = GM \, m/\hbar = 22.4 \, km/s \left(\frac{M}{10^8 M_{\odot}}\right) \left(\frac{m}{10^{-22} eV}\right) \simeq \sqrt{\frac{\hbar}{m}} (G\bar{\rho})^{1/4}$$

4) mass

$$M_Q = \frac{4}{3} \left(\frac{\lambda_Q}{2}\right)^3 \bar{\rho} = \frac{4}{3} \pi^{\frac{13}{4}} \left(\frac{\hbar}{G^{\frac{1}{2}m}}\right)^{\frac{3}{2}} \bar{\rho}(z)^{\frac{1}{4}} = 1.54 \times 10^8 M_{\odot} \left(\frac{m}{10^{-22} eV}\right)^{-3/2} \left(\frac{\bar{\rho}}{10^{-7} M_{\odot}/pc^3}\right)^{1/4}$$

also explain max. mass of galaxies

5) Angular momentum

$$u_c = M x_c v_c = \hbar \frac{M}{m} = N\hbar, \text{ (L eigenstates?)}$$
$$= 1.1 \times 10^{96} \hbar \left(\frac{M}{10^8 M_{\odot}}\right) \left(\frac{10^{-22} eV}{m}\right) \simeq \frac{\left(\frac{\hbar}{m}\right)^{5/2} \overline{\rho}^{1/4}}{G^{3/4}}$$

6) acceleration \rightarrow MOND (LKL, PLB 2019)

$$a_{c} = x_{c}/t_{c}^{2} = G^{3}m^{4} M^{3}/\hbar^{4}$$

= 1.9 × 10⁻¹¹meter/s² $\left(\frac{m}{10^{-22}eV}\right)^{4} \left(\frac{M}{10^{8}M_{\odot}}\right)^{3} \simeq \sqrt{\frac{\hbar}{m}} (G\bar{\rho})^{3/4}$

cf) MOND scale $a_0 = 1.2 \times 10^{-10} meter/s^2$

7) potential $V_c = 1$ gives Max. Galaxy mass $M = 10^{12} M_{\odot}$

$$V_c = \frac{m^2}{\hbar^2} (4\pi GM)^2 = 8.8 \times 10^{-7} c^2 \sim \left(\frac{m}{10^{-22} eV}\right)^2 \left(\frac{M}{10^8 M_{\odot}}\right)^2$$
 Nonrelativistic

ULA miracle

$$I = \int d^{4}x \sqrt{g} \left[\frac{1}{2} F^{2} g^{\mu\nu} \partial_{\mu} a \partial_{\nu} a - \mu^{4} (1 - \cos a) \right]$$

$$m = \frac{\mu^{2}}{F}$$

$$\ddot{a} + 3H\dot{a} + m^{2} \sin a = 0$$

oscillation starts at $H \sim \frac{T_{osc}^{2}}{M_{p}} = m$
MDE starts at $T_{1} \sim 1eV \rightarrow \frac{\mu^{4}(DM)}{T_{osc}^{4}(rad)} \rightarrow \frac{\mu^{4}T_{osc}}{T_{osc}^{4}T_{1}} \sim 1$

$$F = \frac{\mu^{2}}{m} \sim \frac{M_{p}^{3/4}T_{1}^{1/2}}{m^{1/4}} \sim 10^{17} GeV$$

$$\Omega_{a} \sim 0.1 \left(\frac{F}{10^{17}GeV}\right)^{2} \left(\frac{m}{10^{-22}eV}\right)^{1/2}$$
 ULA miracle?
Hui et al 2017

ULDM naturally explains DM density with GUT scale. This holds for generic ULDM with a quadratic pot.

Thermal history		
GUT	$T_c \simeq F \sim \frac{M_{\rm P}^{3/4} T_1^{1/2}}{m^{1/4}} \sim 10^{17} \; {\rm GeV}$	
Oscillation starts	$T_{osc} \sim (M_P m)^{1/2} \sim 10^3 \text{eV}$	
mde	$T_1 \sim 1 \text{ eV}$	
Now	$T_0 \sim 10^{-4} \text{ eV}$ $\Omega_{\phi} \sim 0.1 \left(\frac{F}{10^{17} \text{ GeV}}\right)^2 \left(\frac{m}{10^{-22} \text{ eV}}\right)^{1/2}$ 20	

Can ULDM solve both H_0 and S_8 ?

GW background detected by pulsar timing array

Porayko+ 1810.03227

ULDM has intrinsic oscillation time scale $1/m \sim yrs [f \sim nHz]$ <image>

 $g_{ij} = -1 - 2 \Psi(t) \delta_{ij}$ time-dependent metric \rightarrow frequency shift δv \rightarrow timing residuals

Gravitational cooling

Dynamical friction by ULDM Wang+ 2110.03428

Stars, gas, DM

Dynamical f

Final pc problem

BH binary (Pyultralight) may solve final pc problem (Koo+2311.03412 PLB)

27

FDM solution to final pc

Koo+ 2311.03412 PLB

SIDM(particle) solution to final pc

Alonso-Álvarez+ PRL

Thermal equilibrium recovers spike

SIDM Spike

SIDM reduces GW due to DF

0.60

Self-interacting scalar dark matter around binary black holes (Aurrekoetxea+: GRChombo)

 can change spectrum from accretion disk & GW patterns from BHs Zhang

Zhang & Yang 2018

Constraints on FDM mass

Why we study self-interacting ULDM?

We can

- allow wider mass range
 - \rightarrow avoid some tensions of FDM
- detect ULDM! (coupling to SM induces self.int)
- calculate abundance (i.e., F)
- find the particle physics model and BSM

Thermal equilibrium also require interactions.

Self-Interacting ULDM

Lee and Koh (PRD 53, hep-ph/9507385)

Galactic DM is described by coherent scalar field

$$S = \int \sqrt{-g} d^4 x \left[\frac{-R}{16\pi G} - \frac{g^{\mu\nu}}{2} \phi_{;\mu}^* \phi_{;\nu} - \frac{m^2}{2} |\phi|^2 - \frac{\lambda}{4} |\phi|^4 \right]$$

typical phi4 theory with gravity

Metric

Field

 $ds^2 = -B(r)dt^2 + A(r)dr^2 + r^2d\Omega$ Spherical.

Stationary spherical

Exact ground state

$$\sigma_* = \sqrt{\frac{\gamma_0 \operatorname{Sin}(\sqrt{2}r_*)}{\sqrt{2}r_*}}$$
$$r_* = r\Lambda^{-1/2}$$

$$\Lambda \equiv \frac{\lambda m_P^2}{4\pi m^2}, \ \Lambda >> 1 \quad \text{(Newtonian & TF limit)}$$

$$New \, length \, scale \, RTF \approx \frac{\sqrt{\Lambda}}{m} = \sqrt{\frac{\pi \hbar^3 \lambda}{8cGm^4}}$$

$$\& \, mass \, scale \quad M_{\text{max}} = \sqrt{\Lambda} \frac{m_P^2}{m}$$

Even tiny self-interaction drastically changes the scales!

 $\phi(r,t) = (4\pi G)^{-\frac{1}{2}}\sigma(r)e^{-i\omega t}$

 \rightarrow allows wider range for m

Detection

dilatonic coupling

$$\mathcal{L} \supset \varphi \frac{d_e}{4\mu_0} F_{\mu\nu} F^{\mu\nu} ,$$

Using atomic clocks to detect ULDM by mimickin g time variations of fundamental constants

$$\alpha(t) \approx \alpha \left[1 + d_e \varphi_0 \cos(\omega t + \delta)\right]$$

Oscillation of fine structure constant

Due to nuclear and atomic structure Yb and Cs have different frequency dependency on α (special relativistic effects)

Dark matter wave

Typical scales for selfint. ULDM

are functions of $\widetilde{m} = \frac{m}{\lambda^{1/4}} \sim \text{energy scale of ULDM}$

1) time

 $t_c \simeq (G\bar{\rho})^{-1/2}$: Hubble time

2) length (Jeans length)

$$\lambda_J = 2 \pi / k_J = \sqrt{\frac{\pi \hbar^3 \lambda}{2 c G m^4}} = 0.978 kpc \left(\frac{\tilde{m}}{10 \text{ eV}}\right)^{-2} \quad \text{t-indep.} \quad \Rightarrow \tilde{m} \sim 10 \text{ eV}$$

3) mass $M_J = \frac{4\pi}{3} \left(\frac{\lambda_J}{2}\right)^3 \bar{\rho} = \frac{\pi^{5/2}}{\sqrt{288}} \left(\frac{h^3\lambda}{cGm^4}\right)^{3/2} \bar{\rho} = 4.908 \times 10^6 M_{\odot} \left(\frac{\tilde{m}}{10eV}\right)^{-6} \left(\frac{\bar{\rho}}{10^{-2}M_{\odot}/pc^3}\right)$

4) velocity
$$v_c \equiv x_c/t_c = \frac{2^{7/4} \left(\frac{cG^3 m^1}{\hbar^3 \lambda}\right)^{1/4}}{\pi^{1/4}} \sqrt{M} = 59.28 \text{ km/s} \left(\frac{M}{10^8 M_{\odot}}\right)^{1/2} \left(\frac{\widetilde{m}}{10 \text{ eV}}\right)^{1/2}$$

5) Angular momentum

$$L_{c} = M\mathbf{x}_{c} v_{c} = \left(\frac{32\pi G\hbar^{3}\lambda}{cm^{4}}\right)^{1/4} M^{3/2} = 3.375 \times 10^{96}\hbar \left(\frac{M}{10^{8}M_{\odot}}\right)^{3/2} \left(\frac{10\text{eV}}{\tilde{m}}\right)$$

6) acceleration

$$a_c = x_c / t_c^2 = \frac{16cG^2 m^4 M}{\pi \hbar^3 \lambda} = 1.163 \times 10^{-10} \text{ meter/s}^2 \left(\frac{\tilde{m}}{10 \text{ eV}}\right)^4 \left(\frac{M}{10^8 M_{\odot}}\right)$$

cf) MOND scale $a_0 = 1.2 \times 10^{-10} meter/s^2$

7) potential
$$V_c = 1$$
 gives Max. Galaxy mass $M \sim 10^{16} M_{\odot}$
 $V_c = \frac{GM}{x_c} = \frac{GM\sqrt{\frac{2}{\pi}}}{\sqrt{\frac{\hbar^3\lambda}{cGm^4}}} = 4.888 \times 10^{-9} c^2 \left(\frac{\tilde{m}}{10\text{ eV}}\right)^2 \left(\frac{M}{10^8 M_{\odot}}\right)$

8) density

$$\rho_c = \frac{2\sqrt{2}M\left(\frac{cGm^4}{\lambda}\right)^{3/2}}{\hbar^{9/2}\pi^{3/2}} = 0.106M_{\odot}/pc^3\left(\frac{\tilde{m}}{10\text{eV}}\right)^6\left(\frac{M}{10^8M_{\odot}}\right)$$
surface density observed $\Sigma_c = 10^{2.15\pm0.2}M_{\odot}\text{pc}^{-2}$

$$\Sigma = \frac{\hbar\pi^{3/2}\sqrt{\frac{\hbar\lambda}{CGm^4}\rho}}{6\sqrt{2}} = 5.124M_{\odot}/pc^2\left(\frac{\tilde{m}}{10eV}\right)^{-2}\left(\frac{\bar{\rho}}{10^{-2}M_{\odot}/pc^3}\right)$$

cosmological constraints Garcia + 2304.10221

10-18 N > 10^{-29} olm < 1cm²/g Real IMPL 10^{-40} $\lambda_{dB} < 1$ kp RSOI > NOB $^{10^{-51}}$ 10^{-62} 10-73 10^{-84} 10^{-9.5} 10-15 10-19 10^{-11} 10-7 10-3 10¹ 10-23 *m* [eV]

SSB

JLee 2410.02842

Galaxy observation gives GUT scale!

Proposal: ULDM is a pNGB associated with GUT scale SSB $T_c \simeq v \sim m/\sqrt{\lambda}$ 39

JLee 2410.02842

Neutrino mass

 $\mathcal{L}_{Yukawa} = -y\phi v^{c}v \quad \text{Majonara } v$ real $m_{\nu} = 0.1 \text{eV}\left(\frac{y}{10^{-25}}\right) \left(\frac{v}{10^{15} \text{GeV}}\right)$ $y = \frac{m_{\nu}\sqrt{\lambda}}{m_{\phi}} = 10^{-25} \left(\frac{m_{\nu}}{0.1 \text{eV}}\right) \left(\frac{m_{\phi}}{10^{-22} \text{eV}}\right)^{-1} \left(\frac{\lambda}{10^{-92}}\right)^{1/2}$

One-loop quantum correction from the Yukawa is $O(y^4) \simeq 10^{-8} \lambda \ll \lambda$

$0.06 \text{ eV} < \Sigma m_{\nu} < 0.071 \text{ eV} (\text{DESI})$

	Hierarchy	JLee 2410.02842
GUT	$T_c \simeq m/\sqrt{\lambda} = \widetilde{m}^2/$	$m \sim 10^{15} \text{ GeV}$
neutrino	$\widetilde{m} \equiv m/\lambda^{1/4} \sim 10 \text{ eV}$	
	reverting Ty	pe I seesaw
EW	$T_{EW} \sim (T_c \widetilde{m})^{1/2}$	~ 10 ³ GeV
PNGB ULDM	$m \sim 10^{-22}$ eV, $\lambda \sim$	~ 10 ⁻⁹²

galaxy observations

neutrino oscillation with ULDM

$$\mathcal{L}_{eff} = -m_{\nu} \left(1 + y_1 \frac{\phi}{\Lambda} \right) \nu \nu, \ \phi(x, t) \simeq \frac{\sqrt{2\rho_{\phi}^{\odot}}}{m_{\phi}} \cos\left[m_{\phi} (t - \vec{\nu} \cdot \vec{x})\right] \sim 10^{10} \text{GeV}$$

Conclusion

- FDM with $m \sim 10^{-22} \text{ eV or}$ Self-interacting ULDM with $\frac{m}{\lambda^{1/4}} \sim 10 \text{eV}$ is consistent with many cosmological observations
- Tc is about GUT scale and SSB of ULDM can give neutrino masses and EW scale

→Oscillation of ULDM can be detected by neutrino osc. and other experiments (GW, atomic clock)

ULDM possibly explain satellite plane, final pc, Hubble tension, S8, and many other mysteries